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Zusammenfassung

In den vergangenen Jahrzehnten wurde die Prozessortechnologie stetig in Richtung mehr
Leistung bei geringerem Verbrauch optimiert. Dabei wurde vor allem auf immer kleinere
Strukturen, Stichwort „Miniaturisierung“, gesetzt. Kleinere Strukturen haben den Vorteil,
dass sie kleinere Ströme zum Arbeiten benötigen und mehr Bauelemente auf einen Chip
gepackt werden können. Zudem erlauben kleinere Strukturen die Verwendung höherer Tak-
traten [1]. Die Halbleiter-Bauelemente der aktuellsten Computer-Chips basieren auf der
14 nm Technologie. 2017 soll jedoch schon die nächste Generation auf den Markt kommen,
die auf der 10 nm Technologie aufbaut [1–3].
Die Miniaturisierung kann aber nicht beliebig weit fortgesetzt werden. Mit 10 nm ist man
bereits im Bereich weniger dutzend Atomschichten. Dies bringt technische Probleme mit
sich, wie das Problem der Fertigungspräzision und Leckströmen [2], aber auch prinzipielle
Probleme wie das Ende der Gültigkeit von Ohms Gesetz im Bereich der mittleren freien
Weglänge der Elektronen (für Au ≈ 5 nm [4]). Der Grund dafür ist, dass der Ladungstrans-
port rein ballistisch wird und man in den Bereich quantenmechanischer Effekte kommt [5].
Um die Strukturen trotzdem weiter verkleinern zu können, muss man zuerst die neuen Eigen-
schaften auf dieser Größenskala verstehen. Diese neuen Eigenschaften könnten die Grund-
lage neuer effizienterer Technologien darstellen, die auf makroskopischer Ebene nicht möglich
wären [5].
Das ultimative Ende der Miniaturisierung stellen atomare Kontakte dar, die im Extrem-
fall an der dünnsten Stelle nur ein Atom im Durchmesser besitzen. Während die Experi-
mentalphysik in diesem Gebiet auf den Arbeiten von Gimzewski et al. [6] mit Rastertun-
nelmikriskopen, beziehungsweise Duerig et al. [7] mit Rasterkraftmikroskopen und später
Muller et al. [8] mit mechanisch kontrollierten Bruchkontakten zur Bestimmung von Leitwerten
und Kräften beim Ziehen von Nanodrähten aufbauen, folgt die Theorie den Arbeiten von
Todorov et al. [9] und Cuevas et al. [10], die die klassische Molekulardynamik zur Bestimmung
von Atomkonfigurationen und den Greensfunktionsformalismus zur Lösung der Schrödinger
Gleichung für die Leitwertberechnung verbinden. Cuevas et al. [10] etablierten dabei das an-
schauliche Bild, dass jedes Orbital einen Leitungskanal zum Gesamtleitwert beitragen kann.
Dieser Methodologie folgt auch diese Arbeit, wie bereits zuvor die Doktorarbeiten von zum
Beispiel Fabian Pauly [11] und Markus Dreher [12].

Smit et al. fanden in ihren Messungen von Mg eine Peak-Struktur im Leitwerthistogramm,
wie man sie von Materialien mit Leitwertquantisierung wie Au her kennt. Dabei befinden
sich jedoch die Positionen der Peaks nicht an den gleichen Stellen wie bei Au [13]. Von Mg
erwartet man aufgrund seiner Elektronenkonfiguration keine Leitwertquantisierung. Dafür
konnten in den Simulationen auch keine Anhaltspunkte gefunden werden. Demnach wäre
es ein reiner Geometrie-Effekt. Dies bedeutet, dass manche Leitwerte lediglich aus ge-
ometrischen Gründen bevorzugt werden. In den Simulationen wurde auch ein Kontakt mit
parallelen Einatomkontakten und eine andere Form von parallelen Drähten gefunden, die im
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Experiment einen entsprechenden Einfluss auf das Leitwerthistogramm haben könnten.
Schirm et al. entwickelten experimentell eine Methode, mit der es möglich ist, zwischen
zwei definierten Plateaus im Leitwert im Bereich weniger Leitungsquanten G0 = 2e2/h,
zum Beispiel zwischen 1.1 G0 und 1.8 G0, mithilfe eines angelegten Stromes zu schalten. Im
Vergleich mit unseren Simulationen konnten wir zeigen, dass zum Schalten zwischen den
Plateaus in Al nur wenige Bindungen gebrochen oder erzeugt werden müssen und dabei im
Wesentlichen ein Atom seine Position verändern muss [14].
Chen et al. fanden in ihren Schrotrausch-Messungen von Au bei Raumtemperatur zwei in-
teressante Ergebnisse: Zum einen ein oszillatorisches Verhalten der Streuung der Ergeb-
nisse als Funktion des Leitwertes, wobei die Minima dieser Oszillation bei den Maxima des
Leitwerthistogrammes war und zum anderen ein erhöhtes Rauschen bei ungefähr G0/2, was
nur durch den Beitrag mehrerer Kanäle erklärt werden kann, was jedoch dem Bild des mono-
valenten Einatomkontaktes von Au widerspricht. Ersteres konnten wir durch das Verhalten
der Kanäle in der Nähe der Maxima des Leitwerthistogrammes erklären, zweiteres durch
das Auftauchen paralleler, monoatomarer Drähte die gleichzeitig gerissen sind und so jeweils
einen fast geschlossenen Kanal beigetragen haben [15].
Evangeli et al. fanden ähnliche Oszillationen bei ihren Thermokraft Messungen von Au bei
Raumtemperatur, was wir wiederum auf die Leitwertkanäle zurückführen konnten. Zeigen
konnten wir diesen Effekt anfänglich nur für das erste Maximum im Leitwerthistogramm. Die
nächsten beiden Minima der Oszillation konnten erst bei einer späteren Studie mit deutlich
größeren Kontakten reproduziert werden. Ein weiteres interessantes Ergebnis ihrer Messung
betraf das Vorzeichen der mittleren Thermokraft. Diese unterschied sich sowohl zwischen
Festkörper und Nanokontakten, als auch zwischen den Au- und Pt- Ergebnissen. Wir kon-
nten diese Effekte auf die unterschiedlichen Zustandsdichten und damit der unterschiedlichen
Beiträge der Orbitale zurückführen [16].
Vardimon et al. machten Schrotrausch-Messungen an ferromagnetischen Metallen bei tiefen
Temperaturen und fanden zwei interessante Punkte: Zum einen ein viel zu hohes Rauschen
im Vergleich zu Cu, was Motts Modell von Ferromagneten widerspricht [17] und zum anderen
eine Sättigung des Fano Faktors, der ein um den Leitwert (genauer dem Poisson verteilten
Rauschen) normierter Wert des Schrotrauschens ist, unterhalb des Wertes für diffuse Streu-
ung. Ersteres konnten wir darauf zurückführen, dass sich die zwei Spin Systeme anders
verhalten als in dem Modell von Mott angenommen wird. Dabei spielen vor allem die d
Orbitale bei den Minoritäts-Spin Elektronen eine entscheidende Rolle, denn diese verhelfen
diesem Spin System zu zusätzlichen Leitwertkanälen, was wiederum zu einer negativen Spin-
polarisierung führt. Diese zusätzlichen Kanäle sorgen auch für das erhöhte Rauschen im
Ergebnis. Der zweite Punkt konnte auf die Verteilung der Kanäle als Funktion der Kanalöff-
nung zurückgeführt werden, die ab wenigen Atomen im Querschnitt fast konstant bleibt [18].
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Weitere Ergebnisse der Arbeit sind, dass

• die Geschwindigkeit, mit der die Drähte gezogen werden, keinen wesentlichen Einfluss
auf die Ergebnisse der Kapitel 5-8 hat (zumindest innerhalb des betrachteten Rah-
mens),

• die Histogramme sich glatt als Funktion der Temperatur verändern,

• der Thermostat wichtig ist, damit sich der Draht nicht zu sehr aufheizt und im Ex-
tremfall schmilzt,

• die Kristallstruktur (fcc oder bcc) keinen großen Einfluss hat,

• die Schließkurven deutlich geringer auf die Temperatur reagieren als die Öffnungskur-
ven und sich im Wesentlichen wie Öffnungskurven bei tiefen Temperaturen verhalten,
wobei bei Au lange einatomare Ketten fehlen,

• die Geometrie des Kontakts mit dem der Ziehvorgang gestartet wird, einen wesentlichen
Einfluss auf die Ergebnisse haben kann (zum Beispiel bei Au auf die Häufigkeit von par-
allelen Drähten und damit auf die mittlere Kanalverteilung und die anderen Größen).
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1. Introduction

In the last decades the development of the processor and memory technologies went toward
higher performance while getting smaller and more energy-efficient. This for example allows
using high performance CPUs in mobile phones. The key for this development was the minia-
turization which enabled to use more transistors on one chip to increase the performance. At
the same time the smaller components need less energy to work and allow for higher clock
rates [1]. Electronic switches, usually realized by transistors, have been miniaturized all the
way down to the atomic scale [19–27]. The latest industrial relevant technology uses 14 nm
semiconductor devices to build up CPUs, but 10 nm devices are already developed and will
probably go into production in 2017 [1–3].
There are several problems going further down, the precision of the fabrication and the
leakage of the systems are two of them [2]. While these are technological problems, there is
a more fundamental one, namely the breakdown of Ohm’s law when the device dimensions
become smaller than the mean free path for electrons. Below that, the electrons travel
through a contact without scattering thus leading to a length-independent resistance which
is dominated by the quantum mechanical properties of the materials [5]. To be able to go
further down in system size, the novel properties at that scale need to be understood first.
These new properties do not only have disadvantages but they open the possibility of new
devices based on mechanisms which are not known from our classical, macroscopic world [5].
The field of nanoscale devices includes many research areas like carbon nanotubes [28] and
biological applications like the conductance of individual DNA molecules [29–33]. The ef-
fects of quantum coherence on those systems are studied with the concept that the electrical
conductance is directly equivalent to the transmission probability of incoming waves [34,35].
In contrast to nanophysics where the length of at least one dimension is below the 100 nm,
this ignores the details of the atomic structures and the rich variety of chemistry involved.
Another field which is directly connected with nanoscale devices tries to trace the macro-
scopic material properties like adhesion, friction and wear back to microscopic processes at
the atomic scale [36,37].

Atomic-sized contacts, in contrast, are for example wires, in which the thinnest part consists
only of one up to a few atoms in cross section. This can be achieved for example by elongating
a wire till it almost breaks at one point with an MCBJ setup [8,39–41] (left side of Fig. 1.2)
or by bringing a sharp STM tip in contact with a substrate [34,38,42–47].
First experiments in the direction of atomic contacts date back to the late 80’s where scanning
tunneling microscope (STM) measurements from Gimzewski and Möller were used to study
the conductance of atomic-sized contacts [6] and Dürig et al. used an atomic force microscope
(AFM) to measure the force of such systems [7]. Examples for conductance curves during
the contacting and extracting of a tip in an STM setup are shown for different materials
in Fig. 1.1. They have in common that all of them show kinds of plateaus as function of
the tip-sample displacement, but while Au shows at least one well developed plateau at
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Figure 1.1.: Examples for conductance curves as function of the tip-sample displacement in STM
experiments for different metals. The black curves are measured in elongation direction
(extraction of the tip) and the gray curves in contraction (bringing in contact) direction.
Reprinted with permission from [38]. Copyright 1998 by the American Physical Society.

Figure 1.2.: Sketch of the working principle of the MCBJ technique with a three-point bending
mechanism (left) and an example of an elongation curve of Al with total transmission
(top right) and channel distributions as best fits to the measured IV curves (lower
right) as function of time. Reprinted with permission from [39]. Copyright 1997 by the
American Physical Society.

G0 = 2e2/h, the other two materials, Al and Pb, show tilted plateaus at non integers of
G0. In the beginning of the 90’s, a new technique called mechanically controllable break
junction (MCBJ), was developed. This method uses a flexible substrate on which the wire
is deposited and which is bent such that the wire gets elongated (Fig. 1.2, left). In 1992
MCBJ measurements of Pt and Nb revealed several conductance steps of the order of G0,
which were traced back to atomic structure rearrangements [8].
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Figure 1.3.: Recent experimental conductance histograms of different metals. Au, Ag, Cu, Al and Pt
are from private communications with Ran Vardimon (see sec. A.7), the ferromagnetic
materials Fe, Co and Ni are from [18] and the data of Mg are from [13].

Todorov and Sutton combined molecular dynamic (MD) calculations with a tight binding
description of the electronic structure to calculate the conductance of the contacts. The
results supported the above interpretation of the conductance steps as results of atomic
rearrangements [9]. A proof for this came from Rubio et al. in 1996 who combined force
and conductance measurements to show that jumps in the conductance are correlated with
jumps in the force [48]. One year later Scheer et al. [39] were able to determine the channel
distribution in Al with the help of multiple Andreev reflections and discovered, that more
than two channels even below a conductance of G0 (right part of Fig. 1.2). This could be
explained by Cuevas et al. [10] by a picture where the number of channels is determined by
the number of atomic orbitals which contribute to the current (valence orbitals). At about
the same time chains of Au with a diameter of only a single atom were discovered [34,49,50]
and new techniques like electromigration [51] were developed to create atomic contacts and
to contact single molecules to electrodes. Those new methods made it possible to show
that single molecule devices can exhibit physical phenomena like Coulomb blockade or the
Kondo effect [45, 52], that they could act as single-electron transistors [53] or as molecular
switches [24,54–59].

At the beginning single conductance curves as function of displacement or time like on the
right side of Fig. 1.2 were investigated and compared with each other. But as each curve
has its own characteristics and not all conductance plateaus are at multiples of G0, statistics
of curves in the form of conductance histograms have been introduced [44,60,60,61]. These
histograms show metal specific preferred conductance values, which are not compatible with
the free electron models. Examples of such histograms for different materials from MCBJ
measurements at low temperatures are shown in Fig. 1.3.

Despite a huge amount of work that followed the line of Todorov, Sutton, Cuevas and
others [9, 10, 38, 62–69, 69–75], there are still a lot of open questions. Many of them include
the correlation between geometrical and conductance properties with (high) statistics which
is still a challenging problem in computer science. There are for example peaks in the
conductance histograms which need a statistical treatment of the problem in theory for each
material separately. Attempts in that direction were done for example by of Cuevas, Nielaba,
Pauly and coworkers [68–70]. These simulations were able to reproduce some experimental
features like the first peak in the conductance histograms of Au, the evolution of Au chains
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with one atom in diameter and the opening of the second channel of Au starting with 1 G0.
They also showed the relation between the cross section of a contact and its conductance
and the sensitivity of the conductance to the position of the atoms near the narrowest part
of the wires for different materials. Open questions remained concerning the positions of
the higher conductance peaks, especially of Au which were not reproducible in a sufficient
manner from theory so far. A related question was the opening of the higher channels of Au
which open in experiments in average much more step-like than in the theoretical results.
A comprehensive review with a lot more references to theoretical and experimental studies
was published by Agraït et al. [5] in 2003 and a more recent overview of the whole area with
introductions to the basic experimental and theoretical approaches can be found in the book
of Juan Carlos Cuevas and Elke Scheer [4].

Apart from the electrical conductance, other transport properties have been studied in the
context of metallic atomic-size contacts. Thus for instance, in recent years the study of the
thermopower is attracting a lot of attention. Thermopower is a measure for the ability of a
material to convert a voltage drop into a temperature gradient and vice versa. The observa-
tion that nanostructured materials may enhance their efficiency makes it to an interesting
research area [76–79]. Low temperature calculations from Pauly et al. showed for example
an almost vanishing average thermopower of Au, Ag and Pt [73] which is consistent with
experimental results from Ludoph et al. [80]. The deviations of the mean values, on the other
hand, were underestimated by far. Looking more closely at the data one could ask if the
slight variation of the mean thermopower toward negative values for Au and toward positive
ones for Pt is only a statistical point or a significant result which would be in contrast to the
bulk properties of this materials. Recent thermopower measurements of atomic contacts at
room temperature showed indeed mean values which are clearly negative for Au and positive
for Pt with minima at the maxima of the conductance histograms [16,81].
Another interesting transport property is shot noise. Shot noise measurements are an in-
teresting tool to get more insights into the quantum properties of contacts far beyond what
is extractable from the conductance measurements [20–24, 28, 35]. As it is connected with
the distribution of transmission eigenvalues it can be even used to extract ranges of possible
values of those [82]. Recent shot noise measurements of Au contacts at room temperatures
by Chen et al. [15] showed suppression of the deviation of the noise at the maxima of the
conductance histograms and a peak in the tunneling regime at about G0/2. The latter point
is specially interesting because it implies that more than one channel contributes to the
conductance which contradicts the picture of the monovalent Au atom with its s orbital
supporting exactly one channel.
As for non-magnetic metals there have been many experimental STM and break-junction-
based studies of ferromagnetic materials [45, 52, 83–114]. But a lot of work has also been
done from the theory side to investigate the transport properties of those ferromagnetic
atomic contacts [69,72,115–142]. The reported theoretical results clearly suggest that in the
atomic scale ferromagnetic contacts, contrary to their macroscopic ones, the d orbitals play
a fundamental role for the transport properties. Shot noise measurements from Vardimon
et al. [18] of ferromagnetic materials and Cu at 4 K showed much larger shot noise values for
the ferromagnetic materials compared to the s conductor Cu. This supports the theoretical
findings and contradicts the semi-classical description of ferromagnetic metals by Mott [17]
where the s orbitals should dominate the conductance properties and the d orbitals the
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magnetic ones. But at that point mainly individual experimental and theoretical works
have been done and a systematic comparison was missing. Vardimon et al. also found a
saturation of the Fano factor, which is the shot noise normalized by the poissonian (classical,
uncorrelated) noise and which can be expressed in terms of transmission eigenvalues τi by
F = (

∑
i τi(1− τ1))/(

∑
i τi), far below the 1/3 one expects in the diffusive limit [143,144].

Smit et al. found a peak structure in the histograms of Mg contacts similar to Au although
with less peaks at different positions [13]. But as member of the alkaline earth metals it
should not show conductance quantization effects at all.
As already mentioned, there have been a lot of papers of atomic or molecular switches pub-
lished [24,54,55,57–59,83]. For example Schirm et al. [14] showed in their experiments that
it is possible to switch with a current between two well defined conductance values in a cyclic
manner at least hundreds of times. As the current was small and the transition very sharp
and well defined the question is if the transition is triggered by a single atom or are there
more atoms involved? And does it play a role in which crystallographic direction the wires
are elongated or grown? - One could expect differences in the results, maybe the switch is
only possible in some directions and not in others?

All these questions are addressed by theoretical simulations because the experiments are
not able to give full answers on their own. In this sense the comparison between theory
and experiments is very important and only in the combination most questions can be an-
swered. This is the aim of this work. Following the line of Todorov, Sutton, Cuevas, Pauly,
Dreher and others, the open questions will be addressed using the combination of MD for
the structure calculations and Green’s functions based on TB parametrizations to calculate
conductance properties of wires which are much larger than what was addressable before in
theory with much larger statistics and for more metals.

For the understanding of the following work a deep knowledge of the literature is not required.
Many properties partly known since up to more than one decade like the building of long
Au chains with only a single atom in cross section will be reproduced and determined in a
straight forward way.
The script is organized as follows. In chapter 2 the basic theory is described following
mainly the lines of [4] and [145]. Chapter 3 shortly presents some details of the code
and why it is able to go beyond what was done before in other works. In chapter 4 the
used model with application details is shown (examples for input and parameter files can
be found in the appendix). There are also a few experimental techniques shortly described.
More profound descriptions can be found in many textbooks like [4]. Two simple academic
examples are finally shown to demonstrate the approach.
Chapters 5-8 show the main results of the work. They include low temperature calculations
of the monovalent metals Au, Ag and Cu but also for Mg, Al and Pt (chapter 5). The
low temperature results are separated into the individual properties under investigation like
conductance histograms, channel distributions, noise and so on. The second one (chapter 6)
shows the results for the ferromagnetic materials Fe, Co and Ni. The third one (chapter 7)
shows room temperature results of Au, Pt and Ni and the last one of them (chapter 8)
analyses Al in more detail to answer the questions in context of the bistable switches of
Schirm et al. and the influence of the elongation direction onto the results.
Chapter 9 is devoted to questions concerning the simulation parameters like the influence
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of the thermostat in the MD calculations onto the results, the influence of the velocity which
is orders of magnitude higher than in experiments and the size and form of the initial wires.
Finally appendix A includes some simple examples for the application of the Green’s func-
tion technique which are also summarized from [4] and some further information like addi-
tional geometries, histograms, an overview of Fano factor convergence values and inofficial
experimental results from Vardimon et al. which were published in other formats.



2. Theoretical background / Methods

Within this work, we want to achieve two things. First of all we want to have metallic
wires with atomic resolution as realistic as possible. To achieve this point we use (classical)
molecular dynamics (MD) simulations with a velocity Verlet kind of time integration schema
and pseudo potentials from the embedded atom method to elongate initially ideal wires until
they break. The details of the methods needed for this part are described in section 2.1.
The second part is the determination of the electronic properties of the geometries ob-
tained in the MD simulations. To these properties belong the conductance (inverse elec-
trical resistance) of the wire-geometry, their channel distribution, shot noise, thermopower
and electronic contribution to the thermal conductance. To get access to those, we use a
nonequilibrium Green’s function technique combined with a tight-binding description of the
atoms, which will be introduced together with the different properties in sections 2.2 and
2.3.

2.1. Molecular dynamics

Molecular dynamics (MD) is a method to derive transport and equilibrium properties of
many-body systems using laws of classical dynamics (e.g. solving Newton’s equations of
motion). In classical MD quantum mechanical effects are ignored or included in an approx-
imated manner into the potentials used to describe the interactions between the particles.
Here, a particle is an abstract object and could be an atom, a molecule or actually a macro-
scopic object. For most practical purposes this is usually a good approximation. But the
quality of the results depend strongly on the potentials used.

An important quantity of a system under investigation is its temperature T , whether it
is kept fixed, manipulated or an outcome of the system itself1. Though temperature is a
macroscopic, thermodynamic quantity2, it has its origins in the microscopic behavior of the
particles of the macroscopic body or volume. Therefore a kind of temperature can be defined
there, too. From the thermal equilibrium one has a definition of the temperature T through
the average kinetic energy per degree of freedom

〈
1
2
mv2α

〉
= 1

2
kBT where α is a component

of the velocity v of a given particle with mass m and kB is the Boltzmann constant. In
MD one can define an instantaneous (time t dependent) temperature T (t) (usually not in
equilibrium) as

T (t) =
1

kBNf

N∑
i=1

3∑
α

mv2α,i(t) (2.1)

1For example heating or cooling due to atomic reorganizations.
2And quasi-stationary equilibrium.
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where N is the number of particles and Nf is the number of degrees of freedom.
The following sections are based on Chapter 4 and 6 of [145].

2.1.1. Velocity Verlet algorithm

A widely used algorithm for time integration is the velocity Verlet algorithm. Here the
coordinates are updated using a Taylor-like expansion

r(t+ ∆t) = r(t) + v(t)∆t +
f(t)

2m
∆t2 (2.2)

v(t+ ∆t) = v(t) +
f(t+ ∆t) + f(t)

2m
∆t (2.3)

The velocity v of the new time t + ∆t can only be calculated after one has calculated the
new positions which are needed for the new forces f .

2.1.2. Nosé-Hoover Thermostat

The Nosé-Hoover thermostat goes back to papers from Nosé [146] and Hoover [147]. The goal
is to fix the temperature somehow to a constant value generating a canonical distribution.
To do this, they start from the Lagrangian formulation of classical mechanics and added an
additional coordinate s with effective mass Q to the N-body system

LNose =
N∑
i=1

mi

2
s2ṙ2i − V (rN) +

Q

2
ṡ2 − L

β
ln(s) (2.4)

with inverse temperature β = 1
kBT

and L is a parameter to be fixed. Here, V (rN) is an
external potential. With pi ≡ ∂L

∂ṙi
= mis

2ṙi and ps ≡ ∂L
∂ṙi

= Qṡ, the Hamiltonian of the
system can be written as

HNose =
N∑
i=1

p2
i

2mis2
+ V (rN) +

p2s
2Q

+
L

β
ln(s) (2.5)

=
N∑
i=1

p′2i
2mi

+ V (rN) +
p2s
2Q

+
L

β
ln(s) (2.6)

= H(p′i, r) +
p2s
2Q

+
L

β
ln(s) (2.7)

where p′i = pi/s is the scaled momenta of particle i of a microcanonical ensemble with
6N + 2 degrees of freedom. At the same time one has to scale the time variable ∆t′ = ∆t/s.
The primed variables are called the real one (see equation 2.7) and the unprimed ones are
called virtual. Due to the time scaling, one can assume that the virtual or the real time step
fluctuates with s, depending on which one is kept fix. The partition function of the system
now reads (assuming only conservation of energy)

QNose =
1

N !

∫
dps ds dp′

N drNs3Nδ(E − HNose) (2.8)

=
C

N !

∫
dp′

N drN exp [−βH(p′i, r)] (2.9)
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Here one has to set L to 3N + 1 if virtual time is kept constant, or to 3N if real time is
kept constant. Now, assuming the latter case, the ensemble average of a variable A(p/s, r)
amounts to

〈A(p/s, r)/s〉
〈1/s〉

=

∫
dp′N drN A(p/s, r) exp [−βH(p′i, r)]∫

dp′N drN exp [−βH(p′i, r)]
(2.10)

= 〈A(p/s, r)〉NV T (2.11)

and the equations of motions can be written as

dr′i
dt′

= s
dr′i
dt

=
∂HNose

∂pi
=

pi
mis

=
p′i
mi

(2.12)

dp′i
dt′

= s
dpi/s

dt
= −∂HNose

∂ri
− pi

s

ds

dt
= −∂V (r′N)

∂r′i
− p′i

sp′s
Q

(2.13)

1

s

ds

dt′
=

s

s

ds

dt
=

∂HNose

∂ps
=

sp′

Q
(2.14)

d(sp′s/Q)

dt′
=

s

Q

dps
dt

= − s
Q

∂HNose

∂s
=

1

Q

(∑
i

p′2i
mi

− L

β

)
(2.15)

Introducing the thermodynamic friction coefficient ξ = sp′s/Q, omitting the primes and
writing time derivatives as dots, one can rewrite the equations above as

ṙi =
pi
mi

(2.16)

ṗi = −∂V (rN)

∂ri
− ξpi (2.17)

ṡ

s
=

d ln(s)

dt
= ξ (2.18)

ξ̇ =
1

Q

(∑
i

p2i
mi

− L

β

)
(2.19)

The quantity for the energy

H′Nose(r,p, s, ps) =
N∑
i=1

p2
i

2mi

+ V (rN) +
s2p2s
2Q

+
L

β
ln(s) (2.20)

is conserved in the sense that Ḣ′Nose = 0. The energy in the physical system (including heat
bath) has to be preserved.

In practice, the used program (LAMMPS [148]) uses a Liouville-Parrinello-Raman scheme to
solve the equations of motion from the Nosé-Hoover chain formalism with a Velocity-Verlet
like schema [149–151].
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2.1.3. Nosé-Hoover chains

While the above described Nosé-Hoover thermostat generates a canonical distributions if one
has external forces and/or the center of mass remains fixed. Due to the conservation ofH′Nose,
there are problems if these constrains are not fulfilled. A case where this thermostat fails
to generate the correct behavior is the harmonic oscillator. To overcome all these problems,
Martyna et al. [152] proposed a method where they coupled more than one Nosé-Hoover
thermostat to a chain of thermostats. The equations of motion of a system with N particles
coupled to a Nosé-Hoover chain with k = M thermostats read then

ṙi =
pi
mi

(2.21)

ṗi = −∂V (rN)

∂ri
− pξ,1

Q1

pi (2.22)

ξ̇k =
pξ,k
Qk

k = 1, . . . ,M (2.23)

ṗξ,1 =

(∑
i

p2i
mi

− L

β

)
− pξ,2

Q2

pξ,1 (2.24)

ṗξ,k =

(
p2ξ,k−1
Qk−1

− 1

β

)
− pξ,k+1

Qk+1

pξ,k (2.25)

ṗξ,M =

(
p2ξ,M−1
QM−1

− 1

β

)
(2.26)

With a chain-length of 1, the original thermostat is recovered. The related conserved energy
is

HNHC(r,p, ξ, pξ) = H(r,p) +
M∑
k=1

p2
ξ,k

2Qk

+
L

β
ξ1 +

M∑
k=2

ξk
β

(2.27)

2.1.4. Embedded-atom-method potentials

A further thing one needs is a model for the interactions between the particles (atoms in our
case). In classical molecular dynamics one usually uses so-called pseudo potentials. They
have functional forms or are tabulated and they can be empirical or fitted to experimental
and/or higher level theories (e.g. DFT3 calculations). The simplest pseudo potentials are
pair potentials which model pure two body interactions. They are only distance dependent
4. More complex ones try to include the effects of more atoms, e.g. three-body potentials5.

In the following, the Finnis-Sinclair embedded-atom-method (EAM) type potentials [153]
will be described which were used in our simulations. It is a higher order potential in the

3Density Functional Theory.
4An example is the Lennard-Jones potential which successfully describes the noble gases.
5An example is the Stillinger-Weber potential, which successfully describes the surface reconstruction of
Si.
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sense that it includes the effects of multiple atoms within a cut-off region. The functional
form of the total energy can be written as [154–156]

Etot =
∑
i,j

φ(rij) +
∑
i

F (ni) (2.28)

ni =
∑
j

%(rij) (2.29)

Here φ(rij) is the pair potential energy between atom i and j (which is purely distant de-
pendent as mentioned above), %(rij) is the density functional describing the electron density
contribution of atom j at position of atom i and F (ni) is the embedding energy which de-
scribes the modification of the energy landscape due to the presence of electron densities
from (other) atoms.

Different realizations of this schema have different drawbacks, some are known to be too
soft, others too stiff [157].

In most calculations we used the potentials from Sheng et al. [156]. They used DFT cal-
culations of a few hundred atomic configurations with about a hundred atoms each to get
statistical data of the potential-energy surface (PES) against which the above formula was
fitted. They included effects of crystal structures, defects, deformations, melting, liquids and
cooling processes and tested them against experimental data. This scheme aims at getting
the best transferable potentials, applicable to low and high coordinated geometries.

2.1.5. Minimum cross section

In this thesis, wires with a diameter up to a few nm and a length (defined as z-direction,
see Fig.2.1) in the same order of magnitude will be analyzed. A characteristic value of such
a wire is its minimal cross section (mcs) perpendicular to the z-direction. Classically it’s
an interesting value because Ohm’s law connects the resistance (or inverse conductance)
of a macroscopic wire with its cross section. The equivalent for microscopic system is the
Sharvin-Weyl formula (see section 2.2.1).
But in microscopic systems, the mcs can not be uniquely defined. In the following, three
different approaches to define a mcs are presented.
The simplest way to calculate a cross section is to project the atoms modeled as spheres
with radii r =

√
3a0, where a0 is the lattice constant, onto the z-axes (assuming the wire is

stretched along the z-axes). The smallest of the values along the axes is the mcs. Divided
by π · r2, the mcs corresponds to the number of atoms in the constriction. In the elongated
case where only the ends of two spheres are overlapping in the constriction6, this value can
be between 0 and 1.
A second possibility is described and used in the dissertation of Markus Dreher [12] and
goes back to [62]. It is based on the assumption of a symmetric wire cross section and the
calculated radii represents the effective radii of a cylinder representing the volume of the
atoms at that position. Therefore, one first determines the volume of the wire at position

6In context of electrons this regime is called "tunneling regime".
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z ±∆z/2 buildt up of atoms with radius r0 = (2/π)1/3 · a0, where a0 is the lattice constant
(the atoms fill the whole unit cell). The volume of that disk Vd is now compared with the
volume of a cylinder (with length ∆z) and one gets the effective radius as

reff =

√
Vd

π ·∆z
(2.30)

Going to bigger wires, both approaches have a big disadvantage: They are not able to cor-
rectly distinguish between multiple discontiguous connections between the leads, which can
break individually. If those regions exist, these two approaches will lead to wrong results
and would have to be somehow modified by a more complex algorithm.

Figure 2.1.: A wire can consist out of more than one connection between the two leads. a)-d) show
the evolution of a Au wire which breaks into three connections (see b) and c)) which
break individually during the elongation process. In the upper parts the correspond-
ing borders of the projections of the connections calculated by the cellular automata
program (see text) are shown.

A different algorithmic approach is by using cellular automata to simulate a flow through
the constriction. In this realization, the atoms are mapped as spheres onto a fine three
dimensional grid7. Each grid point (cell) can be part of an atom or not, having the value
‘0’ or ‘1’. The rules for a cell A are as follows: Assuming it is occupied by a flow particle
(electron), then search for a cell to put the electron in. The possibilities are (in that order):
to the cell below, to one of the other four cells adjacent below or to one of the four cells in
the same height. As precondition the target cell has to be empty and has to be part of an
atom. If a target cell B is found, the flow particle goes from cell A to cell B, emptying cell A
and filling cell B. If no target cell can be found, or cell A is not occupied by a flow particle,
nothing happens.

7So each atom is represented by a couple of grid points in all three spatial directions.
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The rules have to be applied to all cells, beginning from bottom to top again and again till
a steady state is achieved. The restrictions are now projected onto the lowest area of cells.
Adding up all flow particles there and dividing the result by the number of cells of the cross
section of an atom leads again to a mcs describing the number of atoms in the restricted
region.
In this context the flow simulation has a further advantage: It can count the number of
connections between the leads. This can be achieved by looking again at the lowest area
of cells and counting the number of closed areas containing only filled cells. To do so one
counts the number of closed borders which is equivalent if one assumes that there are no
simple holes.
The evolution of such a wire where multiple connections appear, is shown in Fig. 2.1.
In this thesis, the last definition of mcs with cellular automata will be used if not written
different.

2.2. Nonequilibrium Green’s functions - The way from
the Hamiltonian to the conductance

In the following section the basic formulas used to calculate the conductance from the Hamil-
ton operator are introduced and their derivations are described. It is meant as a summary
of the relevant chapters of the textbook from Juan Carlos Cuevas and Elke Scheer [4]. More
specialized descriptions of some topics can be found in the dissertations of Fabian Pauly [11]
and Markus Dreher [12]8.

2.2.1. Sharvin-Weyl formula - scattering approach

From Ohm’s law, it is known that the (electrical) conductance G of a macroscopic metallic
wire with cross section area S, length L and conductivity σ is given by

G = σ
S

L
(2.31)

In 1965 Sharvin approximated the propagation of electrical current through a ballistic contact
where the length is smaller than the mean free path of the electrons, with the flow of classical
gas through an orifice. With a net current of I = ne∆vS, where e is the electron charge,
S = πR2 the cross section area with radius R and ∆v = ±eV/(~kF ) the velocity change of
the electrons through a potential difference of eV , the Fermi wave vector kF and the electron
density n = k3F/(3π

2), Sharvin ended up with a conductance given by

G = G0

(
kfR

2

)2

(2.32)

where G0 = 2e2

h
is the quantum of conductance. The result also includes a factor of 2 for the

spin and a factor of 3
8
for the correct integration of ∆v through the orifice.

8In German.
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For narrow contacts (2kFR � 1), the so-called Weyl correction takes into account that the
Heisenberg uncertainty principle influences the Fermi electrons:

G = G0

(
kfR

2

)2(
1− 2

kFR
+ · · ·

)
(2.33)

2.2.2. Heuristic derivation of the Landauer formula

In quantum mechanics, one can write the (one dimensional) current (considering a plane
wave eıkx) through a potential barrier from left to right as

JL→R =
e

L

∑
k

v(k)τ(k) fL(k)[1 − fR(k)] (2.34)

where e
L
v(k)τ(k) = Jk is the electron current density for a given k with e the electron charge,

L the length of the barrier, v(k) = ~k/m the group velocity, τ(k) = |t|2 the transmission
probability with the transmission amplitude t and fL/R(k) the Fermi function of the left/right
electron reservoir.
Going from the sum (1/L)

∑
k to the integral form 1/(2π)

∫
dk and with E = ~2k2/(2m)

from dk to dE, one gets

JL→R =
e

h

∫
dE τ(E) fL(E)[1 − fR(E)] (2.35)

and the total current I(V ) (with a factor 2 for the spin)

I(V ) = JL→R − JR→L (2.36)

=
2e

h

∫
dE τ(E) [fL(E) − fR(E)] (2.37)

≈ 2e2

h
· τ(E = EF ) · V for low V at T=0K (2.38)

= G0 · τ(E = EF ) · V (2.39)

= G · V (2.40)

Here the fact was used, that fL(E) − fR(E) at T = 0 K is equal to one in the interval
[EF − eV,EF + eV ] and zero elsewhere.
If the transmission amplitude t(E = EF ) is not a scalar but a matrix (operator) t̂(E = EF ),
one has to sum up all its eigenvalues τn to get the total conductance τ :

G = G0 τ = G0 |t|2 → G = G0 Tr
{
t̂ †t̂
}

= G0

∑
n

τn (2.41)

The τn’s are in the range [0, 1] and are also called (individual) channel transmissions because
each physically available channel (e.g. overlap between electronic orbitals) is represented by
one eigenvalue τn and can contribute up to 1 G0 to the total conductance. Equation (2.41)
is known as multi channel Landauer formula.
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2.2.3. Green’s functions

With the help of Green’s functions one can derive the Landauer formula in a more formal
way. To do so, let us start with the Schroedinger equation of motion

ı~Ψs(t) = HΨs(t) (2.42)

Ψs(t) = e−
ı
~H(t−t0)Ψs(t0) (2.43)

with the time-evolution operator Ss = e−ıH(t−t0). The time independent Schroedinger equa-
tion can be solved with the Green’s function (propagator) G9

H(x)Ψ(x) = EΨ(x) → [E −H(x)]G(x, x′) = δ(x− x′) (2.44)

H(x) =
p2

2m
+ V (x) = − ~2

2m
∂2x + V (x) (2.45)

In the case of free electrons the potential is constant (V (x) = V0) and one gets an exact
solution for G:

G(x− x′, E) = ∓ ı

V
e±ık|x−x

′| (2.46)

with k = m · v =
√

2m(E − V0). The upper sign corresponds to the retarded and the lower
one to the advanced Green’s function. The function G(x − x′, E) can be interpreted as
propagation amplitude of an electron, moving from x′ to x at energy E. Retarded/advanced
means that the propagation is forward/backward in time. The Green’s functions with the
corresponding signs have an superindex r/a for retarded/advanced.
To solve the problem of divergencies an infinitesimal imaginary part E → E±ıη is introduced.
The sign of the imaginary part shows the direction in time: positive for forward (retarded)
and negative for backward (advanced):

lim
η→0

[(E ± ıη) − H(x)]Gr,a(x, x′) = δ(x− x′) (2.47)

or as an operator identity

Gr,a(E) = lim
η→0

[(E ± ıη)1 − H]−1 (2.48)

=
∑
n

|Ψn〉 〈Ψn|
(E ± ıη)− εn

(2.49)

where 1 is the identity operator, and εn and |Ψn〉 are the eigenvalues and eigenfunctions of
H, respectively. For simplicity, the limit η → 0 is from now on implicitly assumed and no
longer explicitly written.
Equation (2.48) is often reffered to as direct definition of G (within this context), while
(2.49) is reffered to as spectral representation.

9In following for simplicity one dimensional.
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If one can divide the Hamiltonian H into an unperturbed H0 and an arbitrary single-particle
perturbation V

H = H0 + V (2.50)

then there exists a third representation for G:

Gr,a(E) = [(E ± ıη)1 − H0 − V]−1 (2.51)

= gr,a(E) + gr,a(E)VGr,a(E) (2.52)

gr,a(E) = [(E ± ıη)1 − H0]−1 . (2.53)

Equation (2.52) is known as Dyson’s equation, where gr,a(E) is the Green’s function of the
unperturbed system H0.
Later, the perturbation V will be replaced by the so-called self-energy Σ which describes
the coupling of the considered system to the environment (e.g. walls).

With the Green’s function one can calculate the local density of states (LDOS) in a given
position r

%(r, E) = ∓ 1

π
Im {Gr,a(r, E)} (2.54)

To see this, one can compare the LDOS in the form known from quantum mechanics (2.55)
with the Green’s function in the spectral representation (2.56) and use the Cauchy principal
value P (2.57):

%(r, E) =
∑
n

|〈r |Ψn 〉|2 δ(E − εn) (2.55)

Gr,a(r, E) =
∑
n

〈r |Ψn 〉 〈Ψn |r〉
(E ± ıη)− εn

(2.56)

1

E ± ıη
= P

(
1

E

)
∓ ıπδ(E) with E → E − εn (2.57)

For a discrete basis of atomic orbitals with atom (sites) i, one ends up with

%i(E) = ∓ 1

π
Im {Gr,a

ii (E)} (2.58)

instead of (2.54).
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2.2.4. Nonequilibrium Green’s function and Keldysh formalism

Up to now, time did not play any role. But to go forward to nonequilibrium Green’s functions,
one has to introduce time to order the processes. This can be done within the framework of
the Keldysh formalism. Let us see how this works (Chapter 7 of [4]).

First of all, one needs the time evolution operator in the interaction picture S(t, t0) with

Ψs(t) = e−ıH(t−t0)Ψs(t0) (2.59)

ΨI(t) = eıH0tΨs(t) = S(t, t0)ΨI(t0) (2.60)

S(t, t0) = eıH0te−ıH(t−t0)e−ıH0t0 (2.61)

where index s denotes the Schroedinger and index I the interaction picture.
The equations of motion are

ı
∂

∂t
ΨI(t) = VI(t)ΨI(t) (2.62)

VI(t) = eıH0tVe−ıH0t (2.63)

where V = H−H0 is the considered perturbation (interaction). Equation (2.62) can be
rewritten in integral form as

ΨI(t) = ΨI(t0) −
∫ t

t0

dt′ VI(t
′)ΨI(t

′) (2.64)

which can be solved iteratively. One ends up with

ΨI(t) =

[
1 +

∑
n

(−ı)n
∫ t

t0

dt1 VI(t1) ·
∫ t1

t0

dt2 VI(t2)

· · ·
∫ tn−1

t0

dtn VI(tn)

]
ΨI(t0) (2.65)

= S(t, t0) ΨI(t0) (2.66)

S(t, t0) =
∞∑
n=0

(−ı)n

n!

∫ t

t0

dt1
∫ t

t0

dt2 · · ·
∫ t

t0

dtn T [VI(t1)VI(t2) · · ·VI(tn)] (2.67)

with the time ordering operator T who arranges the operators in the correct order in time
from right to left (t > t1 > · · · > tn > t0) and takes care of the anticommutator relation for
fermions. The expectation value of an operator A now reads

〈A〉 =
〈ΨI |AI(t)|ΨI〉
〈ΨI |ΨI 〉

(2.68)

=
〈φ0 |S(−∞, t)AI(t)S(t,−∞)|φ0〉
〈φ0 |S(−∞, t)S(t,−∞)|φ0〉

(2.69)
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Here one assumes an adiabatically on and off switching of the perturbation V(t)→ exp{−ε |t|}V(t)
at t = ±∞ and a noninteracting state |φ0〉. The generalization of (2.68) to non equilibrium
systems in (2.69) has the disadvantage that the time-evolution can not be written in a single
operator any more. To overcome this, one introduces the Keldysh contour which divides the

upper branch (+)

lower branch (-)

-∞
+∞

-∞

Figure 2.2.: The Keldysh contour with an upper and a lower branch as usually shown in textbooks
[4].

timeline into two branches: an upper branch going from −∞ to +∞ and a lower one going
from +∞ to −∞ (Fig. 2.2). They are connected at +∞. Introducing an index +/− to
indicate if the operator is defined in the upper/lower branch and a time ordering operator
for the Keldysh contour Tc one gets

〈A〉 =
〈φ0 |Tc [AI(t)S−(−∞,∞)S+(∞,−∞)]|φ0〉

〈φ0 |S−(−∞,∞)S+(∞,−∞)|φ0〉
(2.70)

=
〈φ0 |Tc [AI(t)Sc(∞,−∞)]|φ0〉

〈φ0 |Sc(∞,−∞)|φ0〉
(2.71)

Sc(∞,−∞) ≡ S−(−∞,∞)S+(∞,−∞) (2.72)

with the time-evolution operator Sc along the Keldysh contour. With the creation and
annihilation operators of a particle (electron) on site i, c†i and ci, there exist four possibilities
for the Green’s functions

Gi,j(tα, t
′
β) = −ı

〈
ΨH

∣∣∣Tc

[
ci(tα)c†j(t

′
β)
]∣∣∣ΨH

〉
〈ΨH |ΨH 〉

(2.73)

with α, β equals + or − for the upper/lower branch. For Gαβ
i,j (assuming 〈ΨH |ΨH 〉 = 1) this

leads to

t = t+ and t′ = t′+ : G++
i,j (t, t′) = −ı

〈
T
[
ci(t)c

†
j(t
′)
]〉

(2.74)

t = t+ and t′ = t′− : G+−
i,j (t, t′) = ı

〈[
c†j(t

′)ci(t)
]〉

(2.75)

t = t− and t′ = t′+ : G−+i,j (t, t′) = −ı
〈[

ci(t)c
†
j(t
′)
]〉

(2.76)

t = t− and t′ = t′− : G++
i,j (t, t′) = −ı

〈
T̄
[
ci(t)c

†
j(t
′)
]〉

(2.77)

where T̄ has the opposite time ordering as T. They can be summarized in a 2 × 2 matrix
Ǧ:

Ǧ =

 G++ G+−

G−+ G−−

 (2.78)



CHAPTER 2. THEORETICAL BACKGROUND / METHODS 31

With that, Dyson’s equation in the nonequilibrium looks like

Ǧ(t, t′) = ǧ(t, t′) +

∫
dt1
∫

dt2 ǧ(t, t1)Σ̌(t1, t2)Ǧ(t2, t
′) (2.79)

where ǧ is the Green’s function of the unperturbed system. The self-energy Σ̌ has the same
2× 2 form as Ǧ.
In many stationary systems, where everything only depends on time differences, one can get
the form of equation (2.52) (with Fourier transformation of equation (2.79))

Ǧ(E) = ǧ(E) + ǧ(E)Σ̌(E)Ǧ(E) (2.80)

For a system with N noninteracting electrons in a time dependent external potential V (t)

with H = H0 +
∑N

i=1 V (ri, t) the self-energy gets the (trivial) form

Σ̌(r, t) =

 V (r, t) 0

0 −V (r, t)

 (2.81)

To have off-diagonal elements, one would need inelastic events like electron-electron or
electron-phonon interaction.

The four Green’s functions (2.74)-(2.77) are not independent from each other. This can be
used to reduce their number to three independent Green’s functions

Gr = G++ − G+− = G−+ − G−− (2.82)

Ga = G++ − G−+ = G+− − G−− (2.83)

GK = G++ + G−− = G+− + G−+ (2.84)

where Gr/a are the retarded/advanced Green’s functions and GK is the Keldysh Green’s
function. The self-energies can be written accordingly

Σr = Σ++ + Σ+− = −
(
Σ−+ + Σ−−

)
(2.85)

Σa = Σ++ + Σ−+ = −
(
Σ+− + Σ−−

)
(2.86)

ΣK = Σ++ + Σ−− = −
(
Σ+− + Σ−+

)
(2.87)

The related Dyson equations are

Gr,a = gr,a + gr,aΣr,aGr,a (2.88)

Gβ = g+− + gβΣaGa + grΣrGβ + grΣβGa (2.89)

= (1 + GrΣr) gβ (1 + ΣaGa) + GrΣβGa (2.90)

where β is K (GK), +− (G+−) or −+ (G−+).
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2.2.5. Temperature

Having a look on G+− in time domain

G+−
ij (t) = ı

〈
c†j(0)ci(t)

〉
(2.91)

one gets for i = j and t = 0

G+−
ii (0) =

∫ ∞
−∞

dE
2π
·G+−

ii (E) (2.92)

= ı 〈ni〉 (2.93)

=

∫ ∞
−∞

dE
2π
· 2πı%i(E)f(E) (2.94)

with 〈ni〉 the mean occupation number on site i. f(E) = [exp{(E − µ)/kBT}+ 1]−1 is the
Fermi function, µ the chemical potential, kB the Boltzmann factor and T the temperature.
This implies that

G+−
ii (E) = 2πı%i(E)f(E) ∝ f(E) (2.95)

and equivalently

G−+ii (E) = −2πı%i(E) [1− f(E)] ∝ 1− f(E) (2.96)

Generalizing these proportionalities and using the general relation
Ga(t)−Gr(t) = G+−(t)−G−+(t), one gets

G+−(E) = [Ga(E) − Gr(E)] f(E) (2.97)

G−+(E) = − [Ga(E) − Gr(E)] [1 − f(E)] (2.98)

These formulas are also true for the unperturbed (non-interacting) Green’s functions g+−/g−+
or in a basis |i〉 for g+−ij /g−+ij .

2.2.6. Application to simple transport problems

Before advancing to the results for realistic systems, it is a good idea to make the formalism
a bit more transparent by using a few simple examples. They can be found in section 7.4
and 7.4.1 of [4] and are the basis for the understanding of the realistic system.
Simple examples for equilibrium Green’s functions (an H2 molecule, a semi-infinite linear
chain and a single level coupled to electrodes, all from section 5.3 of [4]) can be found in the
appendix (A.1).

1) Consider a linear chain with the tight-binding Hamiltonian

H =
∑
i

εini +
∑
ij

tij

(
c†icj + c†jci

)
(2.99)

=
∑
i

εini + t
∑
i

(
c†ici+1 + c†i+1ci

)
(2.100)
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where only next neighbor interactions and a constant hopping parameter t between the
neighbors are considered. The current through a point between site i and site i+ 1 can then
be calculated via

I(t) =
ıet

~

(
c†i (t)ci+1(t) − c†i+1(t)ci(t)

)
(2.101)

The mean value of that current operator is now just

〈I(t)〉 =
ıet

~

(〈
c†i (t)ci+1(t)

〉
−
〈
c†i+1(t)ci(t)

〉)
(2.102)

=
et

~
(
G+−
i+1,i(t, t) − G+−

i,i+1(t, t)
)

(2.103)

〈I〉 =
et

~

∫ ∞
−∞

dE
2π

(
G+−
i+1,i(E) − G+−

i,i+1(E)
)

(2.104)

where 〈I〉 is the Fourier transform of 〈I(t)〉. The Fourier transformation is possible if a
stationary state is achieved.

2) Consider two leads, HL (left) and HR (right), which touch each other at only one point
(one atom of each lead) which leads to a coupling HC . The tight-binding Hamiltonian can
be written as

H = HL + HR + HC (2.105)

= HL + HR + t
(
c†LcR + c†RcL

)
(2.106)

The resulting current in the point contact is (assuming a stationary state)

I = 〈I〉 =
et

h

∫ ∞
−∞

dE
(
G+−
RL (E) − G+−

LR (E)
)

(2.107)

One now has to make a choice for the perturbation. The external potential as perturbation
is not a good idea, because the voltage drops through the whole system. A better choice is
to make the coupling the perturbation and to introduce the voltage by shifting the corre-
sponding chemical potential (e.g. µL = eV and µR = 0). The corresponding self-energy for
the latter choice is then

Σr,a
LR = Σr,a

RL = t (2.108)

Σ+− = Σ−+ = 0 (2.109)

Using equation (2.89) in two equivalent forms with Σ+− = 0 (in energy space) leads to

G+−
LR = g+−LR + tg+−LLG

a
RR + tgrLLG

+−
RR (2.110)

G+−
RL = g+−RL + tG+−

RRg
a
LL + tGr

RRg
+−
LL (2.111)
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Together with equation (2.90) for G+− and G−+ and the general relations
Ga −Gr = G+− −G−+ and Ga = [Gr]† one ends up at

I =
e

h

∫ ∞
−∞

dE t2
[
g+−LL (E)G−+RR(E) − g−+LL (E)G+−

RR(E)
]

(2.112)

=
e

h

∫ ∞
−∞

dE t2 |1 + tGr
RL(E)|2 ·

[
g+−LL (E)g−+RR(E) − g−+LL (E)g+−RR(E)

]
(2.113)

Gr
RL can be calculated by using the RL and LL component of Dyson’s equation (2.88).

Taking into account that g is purely diagonal (gRL = 0) and Σ is purely off-diagonal, one
gets

Gr
RL = grRRΣr

RL G
r
LL = t grRR G

r
LL (2.114)

Gr
LL = grLL + grLLΣr

LRG
r
RL = grLL + t grLL G

r
RL (2.115)

↪→ 1 + tGr
RL =

[
1 − t2grRRg

r
LL

]−1 (2.116)

together with (2.95) and (2.96) the current reads (remembering the shifts from the chemical
potential)

I =
e

h

∫ ∞
−∞

dE
4π2t2 %L(E − eV )%R(E)

|1 − t2grLL(E − eV )grRR(E)|2
· [f(E − eV ) − f(E)] (2.117)

=
e

h

∫ ∞
−∞

dE τ(e, V ) · [f(E − eV ) − f(E)] (2.118)

where %L/R is the local density of states of the two leads (projected onto sites L/R). For
sufficient low voltages, the current depends only linearly on V

I(EF , V = 0) ≈ e

h
· τ(EF , V = 0) · V (2.119)

= G · V (2.120)

=
G0

2
· τ(EF , V = 0) · V (2.121)

The prefactor is only G0

2
because the spin dependency was ignored here without compensating

it by a factor of two.
In the tunneling limit, where V 6= 0 but t goes to zero, the denominator of τ goes to one
and the current becomes

I =
e

h

∫ ∞
−∞

dE 4π2t2 %L(E − eV )%R(E) · [f(E − eV ) − f(E)] (2.122)

The differential conductance (in opposite to the linear one in (2.119)) is given by the deriva-
tive of the current by the applied voltage. Assuming that the left lead is for example an
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STM (Scanning tunneling microscope) tip with a constant density of states near the Fermi
energy %L(EF ), then G(V ) is proportional to the local density of states of the sample %R:

G(V ) =
dI

dV
(2.123)

=
e

h
4π2t2 %L(EF )%R(EF + eV ) (2.124)

∝ %R(EF + eV ) (2.125)

Here ∂f(E−eV )
∂V

= δ(EF − (E − eV )) was used.

2.2.7. Resulting formulas for the current through realistic systems

    left 
lead / wall central wire (C)

    right
lead / wall

lead surfaces

 (L)  (R)

Figure 2.3.: Schematic representation of a system with a wire (C) connected to two leads (L) and
(R).

Up to now the formalism of the nonequilibrium Green’s functions was derived and their
usability for a few simple systems was demonstrated. Now we want to derive the formulas
applicable to realistic systems: three dimensional wires consisting of atoms with orbitals
(tight-binding approach without inelastic interactions):

H =
∑
ij,αβ,σ

hiα,jβc
†
iα,σcjβ,σ (2.126)

The atoms are labeled with i, j with orbitals α, β. Spin σ was included here for completeness
and hiα,jβ are the hopping matrix elements.
The goal is to calculate the current J through a wire. To get there one first divides the system
into three regions (Fig. 2.3): a semi infinite wall (electrode/lead/reservoir) on the left side
(index L), a semi infinite wall on the right side (index R) and a piece of wire connecting
those two walls (index C). This is similar to the second example in the last part (two leads,
touching at one point).
Assuming that the walls do not couple directly to each other (they are separated far enough),
one can write the Hamiltonian as

H =


HLL tLC 0

tCL HCC tCR

0 tRC HRR

 (2.127)

where the main diagonal consists of the Hamiltonians of the three subsystems which couple
through the t’s.



36 2.2. NONEQUILIBRIUM GREEN’S FUNCTIONS

Using the hopping matrices tCX and tXC with X = L,R defined as

(tXC)iα,jβ = hiα,jβ with i ∈ X; j ∈ C (2.128)

(tXC) = (tXC)† (2.129)

the (mean) current can be written as (looking only at the interface LC)

I =
ıe

~
∑

i∈L;j∈C;αβσ

[
hiα,jβ

〈
c†iα,σcjβ,σ

〉
− hjβ,iα

〈
c†jβ,σciα,σ

〉]
(2.130)

=
e

~
∑

i∈L;j∈C;αβσ

[
hiα,jβG

+−,σσ
jβ,iα (t, t) − hjβ,iαG

+−,σσ
iα,jβ (t, t)

]
(2.131)

=
2e

~
Tr
{
G+−

CL (t , t)tLC − tCLG+−
LC

}
(2.132)

Summing up over the spin degrees of freedom resulted in a factor of two (spin degeneracy
leads to equal contribution from each spin).
Following the same arguments as in subsection 2.2.6, one ends up with

I =
2e

h

∫ ∞
−∞

dE 4 Tr{Gr
CC tCRIm {ga

RR} tRCGa
CC tCLIm {ga

LL} tLC} × (fL − fR)

(2.133)

with the Fermi functions fL/R of the walls and the Green’s functions of the non-interacting
walls gLL/RR. The influence of the right wall, which was not clearly visible in equation
2.132, was introduced by using Dyson’s equation for G+−

CL/LC and following up for G
+−/−+
CC ,

where GCC is influenced by the interaction with both walls. Using the self-energy Σ and the
scattering rate matrix Γ with

Σr,a
X = tCXgr,aXXtXC (2.134)

ΓX ≡ Im {Σa
X} (2.135)

where X is L or R one gets

I =
2e

h

∫ ∞
−∞

dE T (E, V )× (fL − fR) (2.136)

τ(E, V ) ≡ 4 Tr{ΓLGr
CCΓRGa

CC} (2.137)

= Tr
{
t†(E ,V )t(E ,V )

}
(2.138)

t(E, V ) = 2Γ
1
2
LGr

CCΓ
1
2
R (2.139)

T (E, V ) is the energy- and voltage-dependent total transmission probability of the system
and t(E, V ) its transmission matrix. To use Γ

1
2 is possible, because Γ is positive definite.
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In the linear regime and for zero temperature the standard Landauer formula is recovered

G =
2e2

h
Tr
{
t†(EF , 0 )t(EF , 0 )

}
(2.140)

=
2e2

h

N∑
i=1

τi (2.141)

with τi the eigenvalues of t†t. In principle, the number of channels N is the dimension of the
matrix t†t, but as this is a somewhat arbitrary size (one could make the wire a bit longer
or shorter while the current should be the same), it should be clear, that this is only the
upper bound. Actually, the (real) number of channels with non-vanishing transmission10 is
determined by the narrowest part of the wire.

In the end, one has to calculate the Green’s functions of the central region GCC and the
self-energies due to the corresponding leads ΣL,R. The first one results in

Ga
CC = (Gr

CC)† =
[(
E − ı0+

)
1 − HCC − Σa

L − Σa
R

]−1 (2.142)

and the second one needs through equation (2.134) the knowledge of the uncoupled (ideal
and semi-infinite) leads gXX . The leads are usually described as ideal, material dependent
surfaces and computed using special recursive techniques (e.g. the decimation technique of
section 2.4.4).

2.2.8. Nonorthogonal basis sets

Going from an orthogonal basis set to a nonorthogonal one, as is regularly used in molecular
electronics because of better transferability, one has to introduce the overlap matrix S with
Sij = 〈i |j 〉. In the orthogonal case one gets the identity matrix

Sij = 〈i |j 〉 = δij (2.143)

S = 1 (2.144)

For the nonorthogonal case where S 6= 1 one has to generalize the eigenstate equation
H − E1 = 0 to HN − ES = 0 where the index N denotes the nonorthogonal basis set.
Rewriting this equation a bit, the same expression as before can be regained

HN − ES = H
′

N − E1 (2.145)

H
′

N = HN − E(S− 1) (2.146)

That means, the on-site energies remain unchanged while the hopping matrix elements get
an energy dependent modification

h
′

ij = hij − ESij (2.147)

10Larger than a certain threshold ε.
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The Green’s functions have to be transformed equivalently

Gr,a
CC,N =

[(
E ± ı0+

)
SCC − HCC,N − Σr,a

L,N − Σr,a
R,N

]−1 (2.148)

t
′

XC = tXC − ESXC,N , X = L,R (2.149)

In practice, one often uses the so-called Löwdin transformation to transform an operator O
from an orthogonal to a nonorthogonal basis set

ON = S
1
2 OS

1
2 (2.150)

2.3. Tight-binding approach

The following section is based on Chapter 9 of [4].
To be able to calculate the Green’s functions of atomic systems, one needs a way to describe
its Hamiltonian. In our work, the so called NRL11 tight-binding method developed by
Cohen, Mehl and Papaconstantopoulos [158] was used12. This is a non-orthogonal tight-
binding scheme which is more transferable than orthogonal ones and uses the Slater-Koster
two-center approximation.

2.3.1. General derivation

The tight-binding method is closely related to the LCAO (linear combination of atomic
orbitals) method. Assuming that the localized orbitals φiα(r) = φα(r − Ri) are centered
around the positions Ri of the atom i, the Hamiltonian H of the system reads

H =
∑
ij,αβ

Hiα,jβc
†
iαcjβ (2.151)

Hiα,jβ =

∫
drφ∗α(r−Ri)

[
− ~2

2m
∇2 + V (r)

]
φβ(r−Rj) (2.152)

where the potential V (r) describes the Coulomb interaction between the electrons and the
ions. This choice of the matrix elements Hiα,jβ neglects the many-body interactions like the
electron-electron interaction.
The integrals are usually not solved directly, but given as parameters which were calculated
approximately or fitted to experimental data or other theories. The approach on how to get
these parameters is the main difference between different tight-binding methods.
In a finite system the Hamiltonian can be diagonalized by rewriting the wave function

Φiα =
∑
jβ

ciα,jβφjβ(r) (2.153)

11Naval Research Laboratory, http://www.nrl.navy.mil/mstd/branches/6390/computational-methods
12Unfortunately the parameters can not be found on the nrl homepage any longer.
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which leads to a set of equations for the coefficients ciα,jβ with energy E and overlap matrix
elements Siα,jβ

0 =
∑
jβ

[Hiα,jβ − ESiα,jβ] ciα,jβ (2.154)

Siα,jβ =

∫
drφ∗α(r−Ri)φβ(r−Rj) (2.155)

The problem has non-trivial solutions if the determinant det(H−ES) = 0. The roots of this
equation are the eigenenergies and the corresponding eigenfunctions are the wavefunctions
of the finite system.
The atomic-like functions can be written as a product of a radial function and spherical
harmonics

φnlm(r) = φnl(|r|) · Ylm(r/r) (2.156)

S+ = (Ylm + Y ∗lm) /
√

2 (2.157)

S− = (Ylm − Y ∗lm) /(ı
√

2) (2.158)

The S± were defined to have real angular functions. The index n labels different functions
with the same angular momentum l (s, p, d, ...). m = 0, ±1, ±2, . . . , ±l (σ, π, δ, . . .)
denotes the quantum number of the z-component of the orbital angular momentum. The
(real) orbitals are labeled as

s (l = 0, m = 0) (2.159)

pz (l = 1, m = 0) (2.160)

px/py (l = 1, m = ±1) (2.161)

d3z2−r2 (l = 2, m = 0) (2.162)

dyz/dxz (l = 2, m = ±1) (2.163)

dxy/dx2−y2 (l = 2, m = ±2) (2.164)

2.3.2. Slater-Koster approximation

In the integral equations (2.152) and (2.155) for Hiα,jβ and Siα,jβ appear one-, two- and
three-center integrals, depending on the positions of the orbitals α and β and the ion. For
the overlap and the kinetic part of equation (2.152) only the positions of the two orbitals
(iα, jβ) are relevant. They can have one center (orbitals are on the same atom; on-site
elements) or two centers (orbitals are on different atoms). In addition, the potential part of
equation (2.152) also includes the position of an ion-potential which can be the same as the
one of one or both of the orbitals (the ion of one of the orbitals: one- or two-center integrals),
or somewhere else (three-center integrals).
The two center matrix elements Klm,l′m′ of the states lm and l′m′ is diagonal in m if the
z-axis is chosen to lie in the line connecting the two centers Klm,l′m′ = Kll′mδm,m′ . With s, p
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and d orbitals, there are 10 irreducible Kll′m (SK-) parameters. If the quantization axis is
fixed in space, the functions have to be transformed to use the SK-parameters. Each function
can be expressed as linear combination of SK-parameters. Now, using only the two-center
form fitted to other data (experimental or other theoretical ones), all matrix elements have
the same symmetry as in free space.

2.3.3. NRL tight-binding method

The question at this stage is how the parameters should be chosen to get results for total
energies, energy bands and geometrical structures as good as possible and at the same time
transferable. The problem is that effects of the three-center terms, which have to be somehow
integrated into the two-center matrix elements, are structure sensitive. The NRL approach
uses the density-functional-theory ansatz for the total energy

E =

∫
d3k

(2π)3

∑
n

εn(k) + F [n(r)] (2.165)

and shifts the potential in such a way, that the density dependent functional F [n(r)] becomes
constant

V0 = F [n(r)]/Ne (2.166)

E =

∫
d3k

(2π)3

∑
n

εn(k) + NeV0 (2.167)

=

∫
d3k

(2π)3

∑
n

(εn(k) + V0) (2.168)

=

∫
d3k

(2π)3

∑
n

ε
′

n(k) (2.169)

For a set of eigenvalues ε(k) and total energies E for different crystal structures and volumes
one determines V0 and with that the shifted eigenvalues ε′(k). Now one has to find a set
of parameters for the Hamiltonians which reproduce the energies and eigenvalues of the
different structures.
The TB-parameters are constructed as follows:
The density of atom i is constructed as

%i =
∑
j

e−λ
2RijF (Rij) (2.170)

F (Rij) = Θ(Rc − Rij) ·
[
1 + e(Rij − Rc)/L + 5

]−1
(2.171)

where the sum over atoms j runs within a cut-off distance Rc around the position of atom
i, weighted with the cut-off function F (Rij) with the length-scale L. Rij is the distance
between the atoms i and j. While L and Rc are given, λ is the first fitting parameter. The
angular-momentum (l) dependent on-site terms are fitted by

hil = al + bl%
2
3
i + cl%

4
3
i + dl%

2
i (2.172)
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The al, bl, cl and dl with l = 0, 1, 2 (s, p, d) are 12 fitting parameters. With 10 independent
(SK) parameters Hll′m (m = σ, π, δ)13 all two-center hopping integrals can be constructed.
This parameters are constructed as polynomial times exponential decay times cut-off function

Hll′m(Rij) =
[
ell′m + fll′mRij + gll′mR

2
ij

]
· e−h2ll′mRij · F (Rij) (2.173)

Sll′m(Rij) =
[
pll′m + qll′mRij + rll′mR

2
ij

]
· e−s2ll′mRij · F (Rij) (2.174)

Sll′m are a set of SK overlap functions for the non-orthogonal tight-binding which have the
same structure as the hopping parameters.
Hll′m and Sll′m include 80 fitting parameters (e, f, g, h, p, q, r, s).
In total, there are 93 fitting parameters to reproduce the database of energies and eigenvalues
mentioned above.

2.4. Electronic transport properties

Up to now it was shown how to calculate the conductance of an (atomic) system. But with
this method, one has access to more transport properties, such as shot noise, Fano factor,
thermopower and the electronic contribution to the thermal transport. These properties
are sometimes easier to measure in experiments than the channel distributions or energy
dependent transmissions they are derived from in theory.
In the following, these three properties will be introduced shortly. It is meant as a summary
of the Chapters 4.7, 4.8 and 19 of [4].

2.4.1. Shot noise and Fano factor

In conductors, eliminating all sources of spurious noise, there remain two types of noise
measured as temporal fluctuations P of the electrical current, namely the thermal noise and
the shot noise. The thermal noise is due to the thermal motion of the electrons and is also
known as Johnson-Nyquist noise. Within a broad frequency range (~ω � kBT ) it has a
white power spectrum (frequency independent) and is directly proportional to temperature
T and conductance G (V = 0, T 6= 0)

Pthermal = 4kBTG (2.175)

The shot noise, in contrast, has its origin in quantum mechanics. Electrons have a finite
probability for being transmitted or reflected within the sample in the non-equilibrium sit-
uation (finite current). This noise is highest if the transmission of the electron is most
uncertain. That is achieved at half open channels (τi = 0.5). If a channel is more or less
open as one half, it contributes less to the total shot noise. Fully open or closed channels
(τi = 0 or 1) have no uncertainty and thus do not contribute to shot noise. For very low
temperatures, the shot noise power reads

Pshot−noise = 2eV G0

∑
n

τn(1− τn) (2.176)

1310 independent combinations of l, l′ and m: ssσ, spσ, ppσ, ppπ, sdσ, pdσ, pdπ, ddσ, ddπ, ddδ.
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In the following
∑

n τn(1− τn) will be referenced as shot noise14.
Shot noise is maximal if the electrons are transmitted randomly and therefore follow the
Poisson statistics

PPoisson = 2eI = 2eV G0

∑
n

τn (2.177)

The factor τn(1− τn) represents the suppression of the noise due to correlation effects (Pauli
principle) which reduce uncertainty. That also means that shot noise is a measure of correla-
tion effects in the system and together with the total transmission, the experimental results
of shot noise also provide information for conclusions on the transmission coefficients [82].
The total (temperature and voltage dependent) noise is a combination of thermal and shot
noise15

P (T, V ) = G0

[
2kBT

∑
n

τ 2n + eV coth
(

eV

2kBT

)∑
n

τn(1− τn)

]
(2.178)

Normalizing the shot noise by the poissonian (classical, uncorrelated) noise, gives at zero
temperature

F =
Pshot−noise
PPoisson

=

∑
n τn(1− τn)∑

n τn
(2.179)

This normalized version is called Fano factor.

2.4.2. Thermopower

The thermopower (or Seebeck coefficient) S is a more complicated matter. It is in general
a measure of the magnitude and sign of a thermoelectric voltage induced by a temperature
difference along the system. In that way it is defined for small temperature differences ∆T
as

S ≈ −∆V

∆T
(2.180)

where µ is the chemical potential and ∆V the (measured) thermoelectric voltage. Here the
usual system geometry is assumed, where the central system is coupled to two leads, one at
each end. Then the temperature gradient is achieved by heating or cooling one lead while
keeping the other one at a constant temperature.
As for shot noise, there are two contributions to thermopower: phonons (lattice vibrations)
and an electronic part. The phonons transport heat from the hot to the cold part of the
system (lead/reservoir) but also interact with the electronic part of the system. Because
phonons contribute not directly to the thermopower but by dragging electrons along, the
phononic contribution is called phonon drag. For point contacts it is believed to be very
small and is therefore neglected.

14If one wants to compare it with experiments, one has to introduce units.
15coth(x) ≈ 1

x
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The electronic contribution (without inelastic scattering) to the thermopower can be written
as

S = − 1

eT

∫∞
−∞(E − µ)τ(E)∂f(E,T )

∂E
dE∫∞

−∞ τ(E)∂f(E,T )
∂E

dE
(2.181)

≈ −π
2k2BT

3e

τ
′
(EF )

τ(EF )
(2.182)

with the zero-bias transmission function τ(E) (G = G0τ(EF ) = G0

∑
n τn(EF )). Here

f(E, T ) = [exp{(E − µ)/kBT}+ 1]−1 is the Fermi function with chemical potential µ ≈ EF .
For zero temperature it achieves a delta function around the Fermi energy EF . In this sense,
equation (2.182) is the leading term of the Sommerfeld expansion of the thermopower for
low temperatures.

At this point it is useful to introduce the coefficients Kn with

Kn =

∫ ∞
−∞

(E − µ)nτ(E)(−∂f(E, T )

∂E
) dE (2.183)

With these coefficients one can express the conductance G and the thermopower S as

G =
2e2

h
K0 and S = − K1

eTK0

(2.184)

In (bulk) wires the transport mechanism is fully incoherent and relevant is the energy de-
pendence of the (macroscopic) conductivity. As both electrons and holes contribute to the
thermopower voltage but partially cancel each other, an electron-hole asymmetry is needed
to gain a finite S and the sign of S can be used to determine which charge carriers dominate
the electrical transport.
In contrast, for atomic contacts the transport mechanism is expected to be coherent and
relevant is the energy dependence of the transmission τ(E). But assuming a two dimensional
electron gas (2DEG) with a restrictive potential perpendicular to the current direction one
gets, depending on the potential, a stepwise or quasi stepwise16 τ(E) where the slope is
always > 0. The result is a thermopower which is always 6 0. But this simple picture
is incomplete, ignoring completely the influence of the orbital structure of the electronic
system, different for each metal. This again leads to a material specific sign, amplitude and
spread of S where again the electron-hole asymmetry is important to gain a finite value.17

16Like the Fermi function at zero or higher temperature.
17That the thermopower can have different signs for different materials and within the spread of one material

(different geometric configurations) was experimentally found for example in [16].
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2.4.3. Electron thermal conductance

Another important transport property that can be calculated within this approach is the
electronic contribution to the thermal conductance κel. It describes how much thermal
energy per unit of time and cross-section area flows induced by a temperature gradient

κel = − Q

∆T
(2.185)

Via K from above (equation 2.183) it can be written as

κel =
2

hT

(
K2 −

K2
1

K0

)
(2.186)

≈ L0TG (2.187)

with the Lorentz number L0 = (kB/e)
2 π2/3. The last term is again the Sommerfeld expan-

sion for the integrals in Kn to lowest order in kBT/µ, valid for smooth functions τ(E). The
approximation is known as Wiedemann-Franz relation and describes the relation between
thermal and electrical conductance.

2.4.4. Decimation technique for the leads

As one wants to calculate the transmission from one lead to another through the interesting
central part, at some point at the beginning of the calculations one has to calculate the
(unperturbed) Green’s functions of the (semi-infinite, ideal) leads.
In the following the decimation technique of Guinea et al. [159] will be shortly described as
the technique of choice. It is well described in the appendix D.2 of [11] and we will use the
notation from there (which is consistent with what was used up to now).
In general, one has to solve the equation for the Green’s function

[(E + ıη)S − H] Gr = 1 (2.188)

The leads are then described by (super) layers parallel to the surface

[(E + ıη)Sm,m − Hm,m] Gr
m,l

+
∑
n 6=m

[(E + ıη)Sm,n − Hm,n] Gr
n,l = δm,l (2.189)

where m, l are the layer index with m, l ∈ {0, nl} where nl is the last layer considered (the
layer nl+1 is not coupled to the surface layer 0 any more). A super layer may contain more
than one layer, depending on the structure and the order of interaction considered. This will
be neglect here for simplicity.
Using translational symmetry, equation (2.189) can be written as

WGr
0 + τ1G

r
1 = 1 (2.190)

τ2G
r
m−1 + WGr

m + τ1G
r
m+1 = 0 (2.191)
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where W, τ1 and τ2 are the coupling matrices containing the (E + ıη)S − H terms.
In the decimation technique, one first eliminates all Green’s functions with odd layer numbers
(Gr

1, Gr
3, Gr

5, . . .). Next, every second Green’s function with even layer number (Gr
2, Gr

6,
Gr

10, . . .) is eliminated. Equations (2.190) and (2.191) can be formally regained for the n’th
step by using

W(n)
s = W(n−1)

s − τ
(n−1)
1

(
W

(n−1)
b

)−1
τ
(n−1)
2 (2.192)

W
(n)
b = W

(n−1)
b − τ

(n−1)
1

(
W

(n−1)
b

)−1
τ
(n−1)
2 − τ

(n−1)
2

(
W

(n−1)
b

)−1
τ
(n−1)
1 (2.193)

τ
(n)
1 = − τ

(n−1)
1

(
W

(n−1)
b

)−1
τ
(n−1)
1 (2.194)

τ
(n)
2 = − τ

(n−1)
2

(
W

(n−1)
b

)−1
τ
(n−1)
2 (2.195)

Ws is now the effective matrix of [(E + ıη)S−H] for the first renormalized (surface) layer
(equation (2.190)) while Wb is the equivalent for the other layers (bulk, n=1: 4, 8, . . .)18.
The new τ ’s measure the effective interactions between the renormalized layers (n=1: be-
tween layer 0 and 4, 4 and 8, . . .)19.

This procedure can now be repeated until the effective interactions of the renormalized
surface layer 0 (τ (ν)1 ) with the first remaining renormalized bulk layer 2ν (τ (ν)2 ) can be ne-
glected, or the W ’s are converged in the sense that the difference between W

(ν−1)
s/b and W

(ν)
s/b

is negligible.
After the convergence of Ws and Wb is achieved, one can write equations (2.190) and (2.191)
as

W(ν)Gr
0 = 1 (2.196)

W(ν)Gr
2ν = 0 (2.197)

and the resulting Green’s functions for surface and bulk are

Gr
s =

(
W(ν)

s

)−1
(2.198)

Gr
b =

(
W

(ν)
b

)−1
(2.199)

The correctness of equation (2.199) can be seen if one repeats the formalism with a layer
sufficiently deep in the bulk.

In principle this has to be done for both leads, but if the leads are identical, one can use the
results of one lead for both.

18for n=2 it would be: 8, 16, . . .
19for n=2: between 0 and 8, 8 and 16, . . .





3. Code optimization

The tight-binding code to calculate the transport through a wire goes back to different
codes from Carlos Cuevas and Fabian Pauly. One of them was used in the work of Markus
Dreher [12]. Within this work, the programs have been merged and optimized in the context
of sparse matrices (reduction of RAM usage of 80 % and more, depending on the size of
the wire) and parallelized within the framework of openmp (shared memory → up to one
node) and mpi (distributed memory→ multi-node calculations). Furthermore the input was
optimized for better readability and comparability with the program code LAMMPS which
was used for the MD-simulations.
For the memory optimization the non-zero entries of the most sparse matrices (mainly the
Hamilton and Overlap matrix) are saved in a small matrix together with their index-pointer
instead of the linear ordering with all zeros1.
The openmp parallelization was realized partly by parallelizing independent loops but mostly
indirect by using MKL-routines for the matrix operations which are openmp parallelized.
The loops are mainly MPI parallelized which partly needs the Skalapack package instead of
the lapack package for the matrix operations. Using the MKL versions of it enables both
parallelization methods in parallel even within the matrix operations which need most of the
computer time (see section A.2 in the appendix). The calculation of the energy dependent
transmission is parallized in two ways, each loop individually and by loops (one has to choose
which one should be used). The first one would be perfect but the current implementation
is not very efficient2 so the second one is the default. This has the disadvantage that the
scalability of the code ends with the number of mpi processes equal to the number of energy
points which are calculated.
The program interface in the form of a parameter file which includes all necessary parameters
for the current run has been optimized in the form that most options have a default value
and all possible options are addressed via option-names. All options not known and anything
after ‘#’ are ignored. An example of such a parameter file with explanations of the options
is given in the appendix (A.2).
The real time needed to calculate the transport of one point with a wire of 1125 atoms in
the central part3, beginning with the creation of the Green’s functions of the walls till the
writing of the data, is shown in Fig. 3.1 as function of the number of used nodes4. The
speedup is the time needed to calculate the test case with a low number processes (cores or
nodes) (here two nodes) divided by the time needed to calculate it with a higher number of

1Usually the matrix entries are stored in a linear manner, one row after the other. That way the position
of an entry (index-pointer) is defined by the position within that line of numbers and the shape of the
matrix.

2Because of a bug of the used hybrid parallized lapack routine, a workaround has to be made which ruins
the efficiency.

3See sec. 4.3.
4The nodes had 24 cores each which were used within the openmp (shared memory) environment.
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Figure 3.1.: Scaling of the TB transport code for the calculation of one point of a wire with 1125
atoms in the central part.

processes5. Ideally it grows with the same factor as the number of processes. In this case
the parallelization would not lead to overhead due to additional communications between
the cores and no timeouts of cores due to asynchronous distributions of calculations6. The
efficiency normalizes the speedup with the number of cores to get a process independent
number. Ideally it should be one. An efficiency of almost 0.8 with 11 nodes is still a very
good one. Smaller systems do not parallelize that far that good.

5An alternative to the strong scaling shown here would be the weak scaling where the system size per
process is kept fix. This makes sense for problems which scale strictly linear with system size.

6CPU load.



4. Model

4.1. Experiments

There are different ways to get experimental access to few atom contacts. One of these is the
so called ’mechanically controllable break junction’ (MCBJ) [39]. Fig. 4.1 shows a sketch of
the working principle: A nanobridge is suspended on a flexible substrate which gets bent in
a three-point bending mechanism (here the central point is fixed while the two arrows on the
sides bend the substrate downwards). By this, the nanobridge gets elongated and thinned
down until it breaks.

Figure 4.1.: Sketch of the working principle of the MCBJ technique.

To some extent, MCBJs were used in all experiments of our cooperation partners.
An alternative method would be to use electromigration where one uses the force of the
electric current to move the atoms [51]. This was used in the group of Elke Scheer to
establish a bistable switch after preparing the samples with an MCBJ technique.
One can also use scanning electron microscopes (STM), atomic force microscopes (AFM) or a
combination of them to create (metal) atomic contacts by bringing the tip of the microscope
in contact with or even press it into the sample and measure current (with STM) and force
(AFM). With (high resolution) transmission electron microscopes (TEM) it is possible to
image atomic contacts with atomic resolution. This can be done by putting an STM into a
TEM or by using the incident energy of the TEM electrons to locally heat up the sample
and burn holes in it.
More information and further references for these techniques can be found in [4, Chapter 2].

Fano factor

Different to the total noise power SI which is the Fourier transform of the voltage fluctuations
produced by the junction, shot noise as part of the total noise power and therefore the Fano
factor F is experimentally not directly accessible. But following Kumar et al. [35] one can
determine it with a set of measurements. Therefore they introduced a reduced noise

Y (V ) =
S(V )− S(0)

S(0)
(4.1)
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and a parameter

X(V ) =
eV

2kBT
coth

eV

2kBT
(4.2)

with which the total noise reduces to the linear relation

Y (V ) = [X(V )− 1]F (4.3)

The curve Y (X(V ), V ) can now be fitted onto a set of noise power measurements.
This method was used in the group of Oren Tal [18].

Channel distribution

There are currently at least two principal ways to determine the channel distribution τi from
experiments: Utilizing the nonlinear properties which appear when using superconducting
leads and by fitting the channel distribution to the Fano factor and conductance values.
The first one uses that the multiple Andreev reflection in the superconducting state leads
to nonlinearities in the I-V curves. They can be fitted which leads to a set of channels
[39,63,160]. The precision of the transmission of each channel is about ±0.05 (see SI of [14]).
The procedure has the great disadvantage that one has to stay at very low temperatures and
has to deal with superconducting leads. Having access to the Fano factor one can overcome
this problem. The second method uses the relation between the Fano factor, conductance
and channel distribution of a contact [82]

G =
∑
i

τi (4.4)

F =

∑
i τi(1− τi)
G

(4.5)

Depending on the problem the two parameters G and F are not sufficiant to determine
the channel distribution exactly but to give a range of possible values for each channel.
The interpretation of the result for a transmission coefficient (channel) as mean value with
standard deviation, which would be the usual interpretation if looking on statistical results
as one does here, is not totally correct here because every value in the range is equally
likely (the highes value in the resulting range has equal probability than every other point
within the range). The resulting uncertainty is much larger than in the first method (see for
example Fig. 3 of [82] or Fig. 6d of [18]).

4.2. Molecular dynamics simulations

The experimental techniques are so called top-down approaches, where one has something
very big (a piece of wire) and makes it smaller to get to the right dimensions (nanobridge).
In the theory on the other hand, one uses bottom-up approaches, where one builds up the
wanted structure (nanobridge) from smaller units (atoms). This difference in the approaches
causes problems fitting theory and experiments together. One problem is, that besides a
tiny region around the few atom contact, the experimental wires have orders of magnitude
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more atoms than the theory is able to handle. One consequence is discussed later to explain
experimental findings not compatible with the theoretical findings at that stage (see sec. 5.2).

upper
wall

lower
wall

central
wire

v

Figure 4.2.: Evolution of a simple Au wire during elongation. The upper wall is therefore pulled
away with a constant velocity of 0.4 m/s. The frame rate is (0.5 ns)−1.

In our approach we build a system separated into three parts, two walls and the central wire
(Fig. 4.2). Every part is build up by atoms described by EAM-potentials in the MD-part
(see sec. 2.1) and by Slater-Koster tight-binding parametrizations to describe the electronic
structure in the calculation of the conductance (see sec. 2.2). The coordinates are those of an
ideal lattice (fcc except for Fe which is bcc) with the corresponding lattice constants. In the
MD-part, which is done with the open source code LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) [148, 161] the atoms in the walls are kept fixed (they do not
move) and the upper wall is pulled away by a constant velocity of around 1 m/s (see Fig.
4.2)1. The velocity seems to be very high, but compared with the speed of sound in such
systems, which is in the order of 103 m/s, it is still very slow. The initial velocities of the
atoms in the central wire are chosen randomly with a Gaussian distribution to yield the
wanted average temperature.
If it is not marked differently, a Nosé-Hoover thermostat keeps the average temperature
constant to ensure an NVT-ensemble and a time-step of 1 fs ensures a stable calculation.
Before the elongation starts, a thermalisation has to be done2. It is required to relax possible
stress at the surfaces due to the ideal lattice within the finite geometry3. During the elon-
gation several snapshots of the atomic coordinates with a frequency typically between one
in 10 and one in 100 ps are written out. Besides the coordinates of the atoms one has access
to data like energies, pressures and forces and can calculate thermodynamic- or global-mean
properties like temperature and the force needed to elongate the wire at the constant velocity.

An example input file for LAMMPS can be found in the appendix in section A.2.

1In most cases about 0.4 m/s.
2We found 100 ps to be sufficient.
3Although surface reconstruction does not play a role with the materials we looked at.
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4.3. Conductance calculations

To calculate the nine by nine elements per atom in the Hamiltonian and overlap matrix4

within the tight-binding ansatz, only the positions of the atoms and their relative orientations
to each other are needed. Those coordinates are taken from the snapshots of the MD
calculations.
The system is divided as in the MD part. The atoms in the walls are not taken explicitly
as the ones of the central wire, but they are used to calculate a surface Green’s-function to
approximate the walls as semi-infinite (perfect) walls.
During the calculation the central wire is forced to be charge-neutral. It has to be done
because the tight-binding parameters are designed for bulk, not for low-coordinated struc-
tures. We use a self consistent manner by alternately shifting the local potentials of the
atoms (the so called ’on-site shift’) and recalculating the densities until it is neutral up to a
certain epsilon [162]5.
As results of the conductance calculations one gets the energy dependent channel transmis-
sions τi,σ(E) 6 and with that the total conductance

G(E) =
e2

h

∑
σ

Tr
{
t†σtσ

}
=
e2

h

∑
i,σ

τi,σ(E) =
e2

h

∑
σ

τσ(E) =
e2

h
τ(E) =

G0

2
τ(E) (4.6)

with the quantum of conductance G0 = 2e2

h
= (12.9 kΩ)−1, the total spin dependent trans-

mission τσ(E) and the total transmission τ(E) =
∑

σ τσ(E) for each snapshot. tσ is the
transmission matrix of spin σ. For some materials (for example Au) the spin (σ) dependence
is omitted, leading to τ↑ = τ↓ = 1

2
τ . In this situations τ := τσ, leading to G(E) = G0τ(E).

The energy dependent density of states at the positions of atoms (the so called local DOS
or LDOS) can also be calculated within the Green’s-function formalism.
The channel transmissions τi,σ are the input values for the post-processing, where one calcu-
lates the properties one is interested in, like the conductance histogram as simple histogram
of the total conductance values at the Fermi energy G(Ef ), the mean channel distribution
at the Fermi energy 〈τi,σ(Ef )〉, the Fano factor as normalized noise of the channels at the
Fermi energy

F =

∑
i,σ τi,σ(Ef )(1− τi,σ(Ef ))∑

i,σ τi,σ(Ef )
, (4.7)

the thermopower

S = − K1

eTK0

(4.8)

with

Kn =

∫ ∞
−∞

(E − µ)nτ(E)

(
−∂f(E, T )

∂E

)
dE (4.9)

4Double with spin.
5If the convergence is slow (& 5 iterations) then the charge neutrality loop is the most time consuming part
of the calculation.

6Also called ’transmission coefficients’ or ’transmission eigenvalues’.
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and the (electron) thermal conductance

κel =
2

hT

(
K2 −

K2
1

K0

)
(4.10)

(see sec. 2.4.1 and 2.4.2). For S and κel one needs, differently to the rest, the energy depen-
dent total transmission τσ(E), but not its decomposition into channels τi,(σ)(E).
Because of the window function one only needs a small (temperature dependent) energy
range around the Fermi energy Ef 7. In the calculations we restrict ourselves to 11 transmis-
sion points to approximate the energy dependency. As the Hamiltonian has to be inverted
several times during the conductance calculations, where the Hamiltonian grows roughly
with N2, where N is the number of atoms in the central region, the conductance calcula-
tions take between one and two orders of magnitude more time than the MD calculations8.

An example parameter file for the calculations of the transport can be found in the appendix
in section A.2.

4.4. Figures

If one does statistics one has to think about presenting a lot of data in a simple way. The
three forms used in this thesis and in most publications are

• histograms: counting the number of events having a specific value (conductance) as
function of that value. One has to weight resolution against statistics (higher resolution
means less average statistics per value).

• scatter plots: plotting every data point or

• density plots: (discretized) scatter plots as 2-dimensional histograms, the height of
each point is coded in color.

Density plots are discretized scatter plots with the advantage that overlapping data points
do not lead to a loss of information. The histograms are projections of scatter plots (or
density plots) onto the corresponding axis, losing information of one axis, but having a
simpler overview of the remaining one, for example the projection of the conductance versus
elongation density plot (Fig. 5.2) onto the conductance axis gives the conductance histogram
(Fig. 5.4).

4.5. Simple Example: Ideal Au wire(s)

The simplest geometry one can think of is an ideal one-atomic wire between two walls as can
be seen on top of figure 4.3 for the cases of three (first and second column) and eight atoms
(last two columns) in the wire. But besides the length of the wire, the position of the wire
in relation to the borders has to be chosen. In the following examples the stablest lattice
position next to the 〈100〉 surface of an Au fcc lattice was used. 9

7The relevant window at 4 K is about 0.0005 Ryd and at 300 K about 0.0294 Ryd.
8With the MD-parameters we used.
9This means that the corresponding Au atom in the chain has 4 next neighbors in the wall against one in
the chain which causes the stable point to be much closer to the wall than the lattice point we consider.
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Figure 4.3.: Results for ideal wires with three atoms (first and second column) and eight atoms
(third and fourth column) as function of the displacement between the atoms in the
wires. 1.0 arb.units corresponds to a distance of about 0.245 nm. In column one and
three the charge neutrality condition was used and it was disabled in the other two
columns. The pictures on top of columns one and three show the corresponding wires
with three and eight atoms. In row one the total conductance (red) and Fano factor
(green), in row two the three contributing channels (τ2 and τ3 are degenerated), in
row three κrel, the quotient of the thermal conductance κel and the Wiedemann-Franz
relation (red) and the thermopower (green) and in row four the DOS of the central
atom in the wire are plotted.

In figure 4.3 all physical properties relevant in this thesis are shown as overview. The prop-
erties were introduced in the theory section and will be discussed in more detail in the
following sections. In the first and third column the charge neutrality condition was used
while it was disabled for the calculations in columns two and four. This condition directly
influences the density of states (DOS) which is shown for the central atom in row four and
leads to less features of the transmission properties (conductance, channel distributions and
Fano factor) as function of the displacement between the atoms in the wire. The drastically
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increased value of the s-orbital leads, e.g., to an almost constant transmission value up to
relative high distances compared to the results without the neutrality condition. In contrast
to the s-orbital, the p-orbitals lose their influence due to the charge neutrality, which is the
cause for the loss of features in the transmission properties of the wires. Due to the much
higher number of atoms (and therefore orbitals), the features of the long wire without charge
neutrality are much more pronounced than in the case of the short wire. What is more in-
teresting is the behavior of the long wire with charge neutrality: The transmission for short
distances is much enhanced compared to the short wire. This is due to the enhanced DOS
in the d-orbitals which leads to an enhancement of the second and third channel.
Of course, the wires are only stable within a small range around 1.0 (about 0.245 nm).10

The exact range depends on the number of atoms in the wire (the longer the less stable) and
its temperature (the higher the less stable).

In a second example one can look what happens if there are two identical wires next to each
other. Here, because of the topological properties of the walls, a continuous separation of
the wires is not possible. But as it is only to demonstrate the effects qualitatively here, in
Fig. 4.4 only stable positions of the individual wires were used. The points with index s are
from a single wire for comparison.
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Figure 4.4.: Results of two parallel ideal wires with three atoms per wire (upper row) and eight
atoms per wire (lower row) as function of their distance. The results for a single wire
are included as reference (last point, x-tic position is marked by ’s’). The distance of
the atoms within one wire is 0.245 nm (=̂ 1.0 arb.units in Fig. 4.3). The properties are
like in Fig. 4.3, except for κrel which is not shown and equal to one for all points.

At short distances the total conductance is suppressed below the conductance of a single
wire (left column of Fig. 4.4). But with increasing distance the conductance rises to the sum
of two single wires. Not all properties regain the values of individual wires (which means the

10The distance was taken from an elongation process where a long single atom chain (7 atoms long) appeared.



56 4.5. SIMPLE EXAMPLE: IDEAL AU WIRE(S)

same values as one individual wire) at the same distance as the conductance. The channel
distribution and with it the Fano factor are slightly more sensitive and need more distance
to show the values of individual wires where every channel of the individual wire is doubled.
This is explained by a look at the DOS which shows that at low distances the DOS of the
d-orbitals are suppressed while the DOS of the s-orbitals are slightly enhanced.
While this description is qualitatively true for both lengths of the wires, there are differences
in the details. The short chains (upper row) are according to the conductance already al-
most separated at a distance of 0.4 nm, while it takes about 50 % longer (0.6 nm) for the long
chains. A second point is more remarkable: The saturated Fano factor is not the same as the
one of the single chain. Following this further one sees that the channels are not as open as in
the single chain case while the DOS of the central atom is higher. The problem at this point
is the charge neutrality condition which modifies the two cases differently11. Deactivating
the charge neutrality condition leads to the assumed behavior (although different results,
not shown).
This problem arises because of the tiny extent of the system (only 3 atoms per chain). The
longer chain is more stable against such problems such that no visible effect can be seen
(although 8 atoms are still very few).

Figure 4.5.: The figures on top belong to the first four data points in the plots of Fig. 4.4, where the
wires in the upper row have three and in the lower row eight atoms each. The figures
include three time-steps evolved with MD encoded in colors (0, 5, and 10 ps).

The figures in 4.5 present not only the ideal wire configurations which were used to calcu-
late the transmission values, but also a short time evolution in 5 ps time-steps encoded in
different colors. The atoms of the walls do not move, so the colors add up to gray. The
other atoms move to a certain degree, leading to partially overlapping or totally separated
color-coded atoms.
Both studied wire-lengths, three and eight atoms, behave similar. Small separations of about
11This is no convergence problem.
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0.2 nm generate high repulsive forces leading to an explosive behavior. The doubled sepa-
ration is not explosive any more, but the configuration is not stable enough to prohibit the
fusion of the two wires. The fused wire is still not stable and breaks in-between 5 and 10 ps.
Displacing further to 0.6 nm is far enough to suppress the attractive (and repulsive) forces
such that the individual wires stay stable12. This was also the point in the discussion of the
conductance values where the mutual influence of the wires seemed to have almost vanished.

These examples show how experimentally accessible values like conductance and Fano factor
can be supplied with insights from experimentally not accessible properties like DOS and
channel distributions. The second example will also become important to explain observa-
tions from an experiment shown later.

In the following sections the results of larger and more realistic systems up to a few hundred
of atoms in the wire and dozens of atoms in the cross section will be shown for different
materials.

12For at least 10 ps.





5. Results for Au, Ag, Cu, Mg, Al
and Pt at 4K

In recent years a lot of work has been done to investigate the properties of atomic-size
contacts, both in theory and experiments. Examples are studies of conductance quantiza-
tion [39, 163], energy dissipation in atomic ballistic wires [83], electron–phonon interaction
modifications to the shot noise [28,35], flicker noise in metal junctions [29] and Joule heating
in the electrodes [30]. Most of these works use statistical analysis methods like conductance
histograms [31, 36, 37, 164] to average over the microscopic variability of junction configu-
rations. Similar tools are density plots of for example the conductance as function of the
elongation of the wire [56,165,166], current-voltage characteristics [167–169] and mechanical
stiffness versus elongation [170]. Two dimensional cross-correlation methods also use entire
ensembles to get more detailed information about motifs of junction formations [75,112,171].
They showed that transport properties such as the conductance [19,172], shot noise [20–24],
or thermopower [26,39] are different from those known of macroscopic wires.
There have also been considerable efforts to go beyond the ensemble-averaged analysis meth-
ods. Using superconducting leads, the theory of multiple Andreev reflections allows the de-
termination of the individual transmission channels [39, 64]. The channel transmissions are
much more sensitive to the atomic configurations near the thinnest part of the wire than
their sum [10,39,71]. It is also known for example that non-integer transmission coefficients
are characteristic for multivalent metals [5, 10,39,64,71].
The shot noise is directly coupled to the behavior of the channels and can therefore be used
as tool to get for example information about ranges of transmission values [82].
At the same time, there have also been many advances from theoretical side. Particularly the
combination of molecular dynamic simulations with quantum transport calculations enabled
the possibility to establish a direct comparison of theoretical and experimental results [9,68,
69,74].
Despite the huge amount of work from experiments and theory not all questions could be
answered yet. There are for example the well known higher conductance peaks of Au which
could not be well reproduced in calculations or the appearance of an enhanced shot noise at
about G0/2 in Au experiments which indicates the presence of multiple channels where only
one should contribute to the conductance [15].

In this chapter the main results of this work for the not explicitly spin-polarized (nonmag-
netic) materials1 Au, Ag, Cu, Mg, Al and Pt at 4 K are presented and compared with
experiments to answer some of the open questions. The six investigated elements will be
grouped into noble (monovalent2) metals (Au, Ag and Cu) and the rest (Mg, Al and Pt)3.

1Spins are considered as degenerated and not explicitly taken into account.
2With an unpaired electron in the s-orbital of the outermost shell.
3Pt belongs to the transition metals.
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In the following they will be referred to as spin independent materials.

Figure 5.1.: Initial geometry of Au for the elongation calculations of the next sections. The walls
were colored in a darker shade than the central wire.

The initial geometry of this systems are like the example in Fig. 5.1 of Au4. They all have an
fcc lattice with the same initial geometry with 563 atoms in the central region, but different
lattice parameters. The target temperature of the thermostat for the calculation of the
geometries was set to 4 K and the wires were elongated with a speed of 0.4 m/s. Statistics
is typically made out of 100 elongation curves.
The results for Cu presented in this section were partially5 published together with experi-
mental results from Vardimon et al. in [18].

4The lattice constants have to be adjusted for each element.
5Conductance histogram, mean channel distribution and Fano factor.
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5.1. Conductance

The easiest value to measure in experiments and therefore the best value to compare with
is the conductance. Unfortunately one can not compare directly single calculations with
single measurements because the systems are not that well defined in experiments. Even
the crystallographic direction in which the wire is elongated is often not known. However,
even if we would know all those details the temperature is larger than 0 K, which means
that one also would have to know the velocities of all atoms. But that is experimentally not
achievable in sufficient detail.
As consequence one has to compare statistics with each other. For that one uses the figure
types explained in section 4.4.

5.1.1. Conductance and elongation

The first thing we want to look at are the correlations between the conductance and the
displacements they were calculated at. Here one has to keep in mind that in principle the
displacement is not defined in a unique way. In theory one has a well defined initial struc-
ture, so one uses the displacement from the upper wall with comparison to that. But in
experiments the initial structure is not well defined so another way has to be used. There
one uses the first event where the conductance achieves 1 G0 as basis6.

The results of our theory curves are plotted as density plots in Fig. 5.2.
One can see similarities and differences between the metals. Within 1 nm of elongation,
for example, most contacts drop down from 10 to 0 G0 where 0 G0 means that the contact
is broken. But how that happens in detail is different. The transition into the tunneling
regime (the exponentially decaying curves below about 1/2 G0) is visible in all contacts, but
best pronounced in Al. That observation gives insight into the rupture behavior: Taking
into account that the data points are calculated at the same discrete spacing in time (and
therefore elongation), there have to be different fast rupture processes involved.
To get a feeling for that, Fig. 5.3 shows one example each for a fast and a slow process.
In the left plots the conductance (red) of the geometries and the force (green) needed to
elongate the geometries further is plotted as function of the displacement. On the right side
two geometries each demonstrate what happens. The upper row shows a sudden rupture
such that the conductance and force drop down to zero immediately. The geometries on the
right show that a mono-atomic wire has formed which snaps back in a very short timescale
after the rupture which leads to a drastic increase in distance between the nearest atoms of
each half of the former wire.
This is an extreme case because not every Au wire develops such a mono-atomic wire. But
similar results can be seen from structures whose atoms in the vicinity of the neck-hole have
slightly stretched bonds. Breaking the contact leads to a sudden loss of the constraint and
the atoms relax on a short timescale, leading to similar conductance and force curves. To
work that way several atoms have to contribute to sum up to a large enough effect. The result
of both effects is that the tunneling regime can not be well represented in the elongation
plots.

6This means that this events always happen at a displacement of e.g. 0 nm.
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Figure 5.2.: Density plots of the total conductance data of 100 elongation curves as function of the
displacement of their upper walls to the initial positions. The densities are normalized
to an upper limit of 9.

Ag and Cu which don’t form long wires (see below) have sufficiently soft potentials to show
the second behavior and therefore do not map the tunneling regime very well.
The second row in Fig. 5.3 shows a slow rupture process of an Au example: The two halves
separate from each other without geometric reordering and the number of elongated bonds
is too low to displace the atoms of the two halves far enough after the breaking of the last
bond to leave the tunneling regime. Nevertheless, the breaking is visible as step in the force.
Because of a high conductance value at the breaking of the contact of about 1.7 G0, the
example in the lower row in Fig. 5.3 for Al shows a very smooth process below 1 G0. This
high conductance value is due to contributions from s and p orbitals instead of only s orbitals
as for Au. Here the two halves are more pyramidal formed, leading to two rigid structures
after breaking. The two resulting halves are stable enough such that the last plateau at
about 1.8 G0 gets recovered if one reverses the elongation direction of the wall (the closing
curve is not shown).
Pt more likely shows the direct jump from short structures (about 1.5 G0) by breaking to
0 G0, but it also shows the slower breaking process like Al with cone like halves.

Another noticeable behavior of the monovalent metals Au, Ag and Cu is the creation of a
clear plateau at 1 G0. This is specially pronounced in Au where, as shown in Fig. 5.3, long
(more than one or two atoms) mono-atomic wires can develop which have about constant
conductance during the chain expansion. The constant conductance is visible as plateau
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Figure 5.3.: Examples for a fast rupture process of Au (upper row), a slower one of Au (second
row) and a slow one of Al (lower row). The geometries are at displacements of 2.09 nm
(0.9 G0) and 2.10 nm (0 G0) (upper row), 1.13 nm (0.9 G0) and 1.22 nm (0 G0) (second
row) and 1.66 nm (1.7 G0) and 1.80 nm (0 G0) (lower row). The vertical gray bars in
the figures mark the positions of the geometries of the right side.

between about 1.4 and 2.1 nm (red) while the force (green) shows multiple jumps similar to
the one in the inset.
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5.1.2. Conductance histograms

In Fig. 5.2 different preferred conductance values for each material can be estimated. The
1 G0 plateau for the monovalent metals was already mentioned, but there are more. To
analyze this further one projects the data of the density plots onto their conductance axes
and thus gets the corresponding conductance histograms (Figs. 5.4).
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Figure 5.4.: Conductance histograms of 100 elongation curves each. The main histograms of Au,
Cu and Mg are cropped in height (see insets). The bin size is 0.1 G0. The dotted blue
lines are from experiments from the group of van Ruitenbeek7 [13] (Mg) and the group
of Tal8 [18] (rest, see also section A.7).

As expected there is a dominant peak9 at about 1 G0 for the monovalent metals. This peak
is very sharp in contrast to the peak of Mg which also has a peak at 1 G0. Al has its first
peak at about 1.2 G0 and Pt at about 1.8 G0. The higher values are due to contributions
from other orbitals than the s orbital, namely the p orbital for Al and the d orbitals for Pt.
The first peak of this metals between 1 G0 and 2 G0 is build up mainly by monomers, dimers
and in the case of Au also mono-atomic chains. Examples for this can be found in Fig. 5.5
and Fig. 5.3.

7The experiments in the group of van Ruitenbeek were done with the MCBJ technique at 4.2 K and
< 10−5 mbar at a separation speed of the leads of 100 nm/s. The statistics includes 3 · 103 traces.

8The experiments in the group of Tal were done with the MCBJ technique at 4.2 K and 10−5 mbar with
notched wires. The experiments were done by Ran Vardimon.

9A peak has to consist out of more than only a single bar to distinguish it from statistical noise. For
example the first peak of Au is build up by at least 5 peaks, but the actual number depends strongly on
the resolution and noise of the histogram.
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Figure 5.5.: Evolution of a Au contact from 2.0 G0 with 3 channels (τi > 0.01, first geometry), a
zigzag structure with 1.2 G0 and 2 channels (second geometry), a monomer with 0.7 G0

and 2 channels (third geometry), a dimer with 0.8 G0 and 1 channel (fourth geometry)
to a long wire with 0.9 G0 and 1 channel.

Further peaks are visible, if not every time very clear separated from the rest. The monova-
lent metals show more clearly separated peaks than the others but they are much broader
than their first ones. An exception is Au where also the second peak is very sharp. The
reason for the difference in Au is the possibility of the creation of parallel mono-atomic wires
which have 1 G0 each. This is an important point understanding different properties of Au
nanocontacts. Therefore it will be discussed later in a separate section (sec. 5.3).
The results of the conductance histograms are in very good agreement with recent experi-
ments (blue curves in Fig. 5.410). The experimental results of the monovalent metals show
well established peaks at slightly below multiples of G0. Ag shows an indicated double peak
structure at about 1.8 G0 and 2.0 G0 which is also reproduced by the theory. The individual
peaks were created from the same kind of geometries but not from the same curves. The
second of the double peak in Ag has additional contributions from wires with three atoms
in diameter, while the plateaus of the first one are solely build up by geometries with two
atoms in the constriction.

Conductance quantization if existent shows itself as sharp peaks in the conductance his-
togram at multiple of G0 [60]. This can be recognized in the histograms of the monovalent
metals in Fig. 5.4. The other materials show deviations in peak positions and width of the
peaks.
Mg low temperature results from Smit et al. [13] (blue curve in Fig. 5.4) aroused the question
of quantization despite it not belonging to the monovalent metals. But the results here do
not show quantization effects. Except the first peak which is very broad compared to the
first peaks of the monovalent metals, the following peaks are at wrong positions and too
broad to be resolved individually11. The first experimental Al conduction peak is about
0.3 G0 lower than the theoretical one while the second one fits quite well. The difference
between the experimental and theoretical results of Al will be discussed later in section 8.
The two visible peaks in Pt fit quite well in theory and experiment to each other.

10See also section A.7 and [18] for more details.
11The second and third experimental peak overlap in the theory results to one noisy peak.
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5.1.3. Channels

Another way to see conductance quantization is to look at its channel distributions.
The transmission eigenvalues (channel openings) τi tell us how the total transmission (the
sum of the eigenvalues) is build up from different ’channels’ (and their eigenvalues) through
the wire. Each atomic orbital can hold one channel and contribute therefore at most one
quantum of conductance (G0). This would correspond to a fully open channel (τi = 1).
But to be able to contribute the orbital has to overlap with an orbital from another atom,
and this overlap does not have to be perfect, leading to a partially open channel (τi < 1).
The distribution of the τi are often referenced to as ‘channel distribution’ and it can be
averaged by multiple realizations (for example different elongation processes with the same
conductance value) to get the ‘mean channel distribution’.
Conductance quantization appears in the mean channel distribution as step wise opening
(one by one) of the individual channels as function of the conductance, meaning that ideally
all channels except one have zero or full transmission.
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Figure 5.6.: Mean channel distributions with standard deviations of the 10 highest channels of 100
elongation curves each as function of the total conductance.

This distribution is experimentally not easy to measure because one has to couple the system
to superconducting electrodes or use the estimation via shot noise measurements (see sec.
4.1). For Mg the calculations do not show a clear step wise opening (Fig. 5.6). For the
monovalent metals this looks different, at least the first channel opens almost fully before
the second one starts to rise noticeable. But also the higher channels saturate much faster
than for Mg. Al with contributions from p orbitals shows from the beginning multiple
channels as does Pt with contributions from d orbitals. But while Al has a dominant channel,
the channels in Pt are more similar in transmission. So Al and Pt do clearly not show
conductance quantization.
Noise suppression as fingerprint of the channel distributions will be a further indication
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whether a metal shows quantization or not. The noise distributions of these metals will be
discussed in section 5.2.
The small peak in the Au distribution at about 0.5 G0 will be discussed later in section 5.3
in the context of parallel wires.
Going back to Fig. 5.5 one finds two further interesting structures, a so called zigzag structure
(second geometry) and a stacked version of it where two zigzag structures lie on top of
each other (here in the out of plane direction, first geometry). The zigzag structure has a
conductance of above 1.2 G0, much lower as one could expect for a geometry which looks
like two parallel wires touching each other. But looking deeper one finds a small difference
of 0.015 nm between the bond length along the wire (about 0.28 nm) and the ones following
the zigzag structure (about 0.26 nm-0.27 nm). And looking at its channel distribution in
Fig. 5.7 (second gray vertical line) one indeed finds two channels, one making 2/3 of the
total transmission and the second making the residual 1/3. Thus it can be thought of
a folded chain where the dominant transmission still goes through the mono-atomic wire.
This structures are experimentally well known for Au [173].
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Figure 5.7.: Channel transmissions of a Au wire as function of the displacement of the walls. On
the left, the transmission eigenvalues (channels) are connected according to their order
in the set of eigenvalues with transmission τi > 0.001. The vertical lines mark the
positions of the Au geometries of Fig. 5.5.

The stacked zigzag structure has with 2 G0 not the doubled transmission compared to one
zigzag structure. This can be explained by the arguments given in section 4.5: Destructive
interference leads to a decrease of the total conductance from the expected 2.4 G0 down to
2.0 G0.

In Fig. 5.7 the channel distribution during the elongation process is shown in two ways. The
version on the left side is as usual in publications: the channels are connected and color coded
according to their size with respect to the others of that geometry. But this is somewhat
misleading, adding information about the time-line of the individual channels one does not
have. In truth one only has the information given in the plot on the right side. The problem
is that one can not be sure that two points connected in such a way are really from the same
‘physical channel’ (two lines could cross). In simple examples this point plays no role but in
more complex ones (for example the channel distribution in Fig. 5.17), the progress is not
unambiguous. The problem can be avoided using finer time resolutions where the needed
resolution depends on the problem12.

12The evolution of the channels would need to be quasi continuous.
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5.2. Noise

Coming from the channel distribution one has access to a value which is experimentally
much easier to measure: Shot noise. In the linear regime the zero-frequency shot noise can
be calculated as SI =

∑
i,σ τi,σ(1−τi,σ) = 2eIF with current I and Fano factor F (see section

2.4.1). The Fano factor which is defined as noise normalized by its full poissonian value 2eI,
can be written as

F =

∑
i,σ τi,σ(1− τi,σ)∑

i,σ τi,σ
(5.1)

It is not only a measure of the correlation between the electrons [174] but also allows con-
clusions about the channel distribution within some range of possibilities13. As one does
not need superconducting electrodes this method is in principle not only applicable at low
temperatures but able to give experimentally access to channel information for wires at
higher temperatures than 4.2 K. But on the other hand the shot noise contribution to the
measured excess noise gets more and more negligible with higher temperatures against the
contributions from the Johnson–Nyquist noise [175].
14

Figure 5.8.: Density plots of the Fano factor and the corresponding shot noise from data of 100
elongation curves each as function of the total conductance.The densities are normalized
to an upper limit of 9. The insets are scatter plots of the data points. The overlap of
the data points in the density plot below the black lines (Fmin) is an plotting artifact14 .
Experimental results can be found in the appendix (sec. A.7).

The results of the calculations of the spin independent materials are shown in Figs. 5.8 and
5.9. The shot noise is here only presented as examples of how it looks like. Later on it will be
omitted because it includes no information not already contained in the Fano factor data15.
13See sec. 4.1 for more details.
14It’s actually at that point not possible to have data points below Fmin (forbidden region).
15It is the Fano factor times a straight line as can be seen in equation 5.1.
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Figure 5.9.: Same as Fig. 5.8 for Mg, Al and Pt.

The black line in the Fano factor plots present the minimal values possible with spin-
degeneracy. It is given by

Fmin = 1− 1

G

[
int(G) + {G · 1− int(G)}2

]
(5.2)

where int(G) means the next lower value to G.16 The dips to zero at integer multiple of G0

are due to the possibility to have only fully open (τi = 1) and fully closed (τi = 0) channels.
Between two integer values one needs at least one channel between zero and one, leading to
a finite Fano factor.

Except for Pt all materials show the first dip at 1 G0 to some extend. This is expected
from the mean channel distributions shown in the last section. The deviations from the
minimal noise are due to the fact that the structures are not ideal, meaning that there is
a great variation in angles and distances between the atoms (disorder) leading to the same
conductance but with higher noise (more channels with less transmission each due to worse
overlap of the orbitals)17. The higher the conductance the more the steps are smeared out,
but the general effect remains up to relative high values (see insets of Fig. 5.8). For the
non-monovalent metals the contributions from other orbitals lead to multiple partially open
channels which also contribute to the noise. This can be seen in Fig. 5.10 where the DOS
contributions of the orbitals (upper row) and resulting transmissions (lower row) for single
atom contacts of Au as representative for the monovalent metals, Mg, Al and Pt are shown.
While Au is an almost pure s conductor, Mg has already large contributions from p orbitals
despite it has no unpaired p electrons. With an unpaired electron in the 3p orbital the
conductance of Al is as expected dominated by p orbitals. Pt on the other side has like Au
an unpaired 6s orbital but also an unpaired 5d orbital18. In this Pt example d dominates by
16Equivalent to floor(G).
17Even the ideal wire at the beginning is not ideal in this sense, because they are finite structures with

surfaces.
18[Xe]4f145d96s1
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far, but in another example shown below (Fig. 5.20) the local density of states in s and d
are similar in size.
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Figure 5.10.: Projection of the density of states (DOS) onto the bridging atom in a single atom
contact (upper row) as function of the energy-difference to the Fermi energy EF . The
orbitals are grouped in contributions from s, p and d orbitals and normalized by the
number of the corresponding orbitals. In the second column the total transmissions
τ(E) of the same geometries are plotted.

Figure 5.11.: Geometries used for the calculations of the (energy dependent) DOS and transmission
in Fig. 5.10.
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5.2.1. Saturation effect and comparison with diffusive regime

There is a second interesting point visible in the plots of the Fano factor results: a material
dependent saturation somewhere below 0.2 . The values of the saturation are presented in
Table 5.1. They are gained by fitting the data above 5 G0 by a horizontal line (f(x) = a).
The standard deviations are in all cases about the same, but the mean values start from
low values of the monovalent metals (0.12 for Ag to 0.16 for Au) up to large values from Pt
(0.27). Mg and Al are with 0.18 to 0.17 more close to the noble metals than to Pt.

Au Ag Cu Mg Al Pt
0.16± 0.02 0.12± 0.02 0.14± 0.02 0.18± 0.02 0.17± 0.02 0.27± 0.03

Table 5.1.: Overview of the convergence results. The results are gained by fitting the Fano values
above 5 G0 by a horizontal line.

The saturation values are interesting because they are material dependent and (much)
smaller than the 1/3 one would expect in the metallic diffusive regime of large structures
19 [143,144]. The expected reduction from 1 to 1/3 is due to the contribution of open channels
with vanishing noise. The underlying distribution has a bimodal form [176]:

P (τ) =
G

G0

· 1

2τ
√

1− τ
(5.3)
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Figure 5.12.: Histograms of the transmission coefficients at a conductance of 15 ± 0.125 G0. The
lines are the fitted bimodal distributions P (τ) (equation 5.3).

This distribution can also be compared with the calculated data. For better visual compar-
ison the prefactor G/G0 = x was used as fitting parameter for the data at 15 ± 0.125 G0.
The results are shown in Fig. 5.12.
19Diffusive regime means: mean free path � sample length � localization length.
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Despite Pt all materials are at 15 G0 far away from the bimodal distribution (dotted lines).
The results for Al get slightly closer to the bimodal distribution going to 40 G0, but not by
much20. The Au distribution does not change visibly. For Ag and Cu no data are available
for such high conductance values. The results from the distributions at 15 G0 are in perfect
agreement with the saturation values from Table 5.1. Pt, the only one near the bimodal
distribution, has by far the highest saturation value but lies still below 1/3.

This can be explained looking at the orbital structures discussed in the context of Fig. 5.10
above: The conductance of monovalent metals is s dominated which are due to their spher-
ical symmetry the most symmetric ones, for Mg and Al p orbitals play also an important
role and for Pt the d orbitals play the most important role which are the most anisotropic
and therefore geometry sensitive ones.

In summary, the saturation of the Fano factor at higher conductance values has most likely
nothing to do with the diffusive regime. It’s more likely a steady state for low conductance
values and contains some information about the orbital origin of the noise. But depending
on the orbital structure (see Pt) the result can be near to diffusive.

20And the statistics is much worse, because we concentrated the computational effort onto low conductance
values.
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5.3. Effect of multiple wires in parallel
21 22

Figure 5.13.: Zoom into the Au data: Conductance histogram and Fano factor with variance
(< F 2 > − < F >2) (upper row) and mean channel distribution and shot noise with
variance (lower row). The experimental curve of the variance of the shot noise (red
curve) is a (rough) mean of the data in [15, Fig. 1e] divided by 4.21 The experiments
were done in the group of Douglas Natelson at room temperature22 .

As already seen in the last sections Au plays a special role within this materials because
it can build long chains [49, 68]. Fig. 5.13 shows a zoom into the four already seen figures
and additionally the variance of the Fano factor and shot noise data. The most interesting
observations here are

• the suppression of the Fano factor and shot noise and their variances at 1 G0 which is
reflected as suppression of all channels but the first in the channel distribution at that
point,

• the high peak in the conductance histogram at 2 G0 which is combined with two "main
ways" in the Fano factor and shot noise distributions, one with high and one with
suppressed noise and the corresponding peak in their variances (Ag and Cu show only
the upper "way") while the experimental data shows a dip in the variance there,

• and the appearance of higher channels at around 0.5 G0 which is reflected as shoulder
(peak) in the Fano factor (shot noise) data and a peak in their variances.

The suppression at 1 G0 was already discussed above as a consequence of the orbital struc-
ture23 which is directly visible by the single atom contacts which lead to 1 G0. The reduction
21The amplitude of the variance in the experiment depends strongly on the used bias voltage. Compare

therefore (e) and (f) of Fig. 1 of [15].
22The experiments were done with an STM setup at room temperature in air with a bias of 180 mV. The

statistics include 816 traces.
23Mainly s orbitals contribute.
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in the variance only supplies this.

total 2 channels 2 wires
counts > 0.1 > 0.2

Au (4K) 24 33% 63% 29%

Au (300K) 17 1% 29% 0%

Ag (4K) 11 0% 18% 0%

Cu (4K) 52 10% 31% 0%

Table 5.2.: Curves with data at 2 ± 0.1 G0 for the different materials. A curve is counted if the
condition is achieved at least three times during the elongation process. The total counts
are the total number of curves found with data at 2 ± 0.1 G0. 2 channels > 0.1 means
that exactly 2 channels have transmission eigenvalues greater than 0.1. The values of
the last column are relative to the contributing curves (total counts).

To have deeper insight into what happens at 2 G0 table 5.2 shows how many curves contribute
with at least three data points24 and how many of the contributing curves have only two
channels greater than 0.1 or greater than 0.2. Only two channels with τi > 0.1 means that
the two channels have to be near 1 to sum up to 2 G0. This could imply that there are two
independent wires.
Indeed, looking at the last row which presents the number of curves with parallel wires25,
one finds that for Au at low temperatures only one curve with τi > 0.1 was not seen as
geometry with two individual wires (second example in Fig. 5.14).

Figure 5.14.: Geometries of Au and Cu at about 2 G0. From left to right:
Au: 1.96 G0, τ1 = 0.99, τ2 = 0.95, τ3 = 0.02, F = 0.046,
Au: 2.03 G0, τ1 = 1.00, τ2 = 0.92, τ3 = 0.04, F = 0.088,
Cu: 2.02 G0, τ1 = 0.99, τ2 = 0.89, τ3 = 0.08, F = 0.117,
Cu: 2.03 G0, τ1 = 1.00, τ2 = 0.96, τ3 = 0.04, F = 0.050.

Fig. 5.14 shows examples for Au and Cu at 2 G0 with τ1 > 0.1 and τ2 > 0.1 but τ3 < 0.1.
The first example shows two parallel wires. The second one is the one of eight Au contacts
in table 5.2 which was not detected as contact with two wires. Cu does not show parallel
wires, the same is true for Au at room temperature. For Ag no geometry has been found
showing this channel distribution.
Two geometries of Cu with τ3 < 0.1 are shown on the right half of Fig. 5.14, a highly
symmetric one (first one) and a completely asymmetric example (second one). Interestingly

24To be not a very short fluctuation or transition state.
25Optically separated.
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it is the asymmetric example which has a very low noise. The reason is the third channel
which is available only at the geometry with higher symmetry where other channels have
closed only a few steps before.

Figure 5.15.: Geometries of Au and Cu at about 2 G0. From left to right:
Au: 2.04 G0, τ1 = 0.99, τ2 = 0.59, τ3 = 0.46, F = 0.250,
Au: 2.01 G0, τ1 = 0.99, τ2 = 0.53, τ3 = 0.48, F = 0.262,
Cu: 1.99 G0, τ1 = 0.98, τ2 = 0.55, τ3 = 0.47, F = 0.264,
Cu: 2.00 G0, τ1 = 0.99, τ2 = 0.53, τ3 = 0.48, F = 0.253.

The extreme opposite in terms of noise at 2 G0 is shown in Fig. 5.15, again for two Au and
two Cu examples. Similar between the geometries is the form of the minimal cross sections
which can be set somewhere between triangular and rectangular (first, second and fourth
geometry). The third geometry, which has a minimal cross section of only two atoms and
which more looks like the first Cu example in Fig. 5.14, has a plane with three atoms in
a triangular cross section connecting the minimal part with the lower lead. Whether it is
the geometry which leads to bad overlap of the orbitals or destructive interference between
channels, the two half open channels contribute almost maximal to the noise.
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Figure 5.16.: Conditional transmission histograms of Au at 4 K. The total transmission histogram
is divided into contributions from one wire with only two open channels > 0.2 (blue),
the contributions from the rest with only one wire (red), the contributions from two
parallel wires (cyan) and the rest which fulfills none of the above conditions (green).
The condition had to be fulfilled at 2.0± 0.1 G0 for at least 3 data points during the
elongation process.

The effect of the results of Au at 4 K in table 5.2 onto its conduction histogram is shown in
Fig. 5.16. Here the green histogram is the difference between the three conditional histograms
in the foreground and the total conductance histogram. Interesting is the relative strong
correlation between the first and second peak in the histogram, meaning that the curves
building up the second peak also contribute with at least the same amount to the first
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peak and there are only relative few points in-between. For the parallel wires (cyan) this is
plausible because the conductance gets reduced by breaking one of the two chains leading
to a sudden decrease to 1 G0. This effect also explains why the peak at 1 G0 has a steep
edge coming from higher values while the other one has the usual decay. In contrast, single
wires with more than two channels (red) like the examples shown in Fig. 5.15 show a sharp
plateau at 1 G0, a broad peak at 2 G0 and a large background in-between. This means
that the corresponding configurations are not very stable and that the transition is more
continuous. The cause for this can be (locally) enhanced disorder like in the chain in the
first geometry of Fig. 5.15.
In the conditional transmission histogram it can be nicely seen that the contribution from
the defined single and parallel wires is only 2/3 of the total height of the 2 G0 peak, the re-
maining 1/3 is background. Background means elongation curves that do not show plateaus
next to 2 G0 with more than two data points. This should be visible in the difference between
opening and closing histograms26. As it is statistically very unlikely that two parallel wires
survive the breaking and reconnection process, but the background and the contribution
from the single wires should remain, the peak at 2 G0 would still be visible but reduced by
the contribution of the parallel wires.

In total it seems to be clear how the two main ways of Fano factors at 2 G0 arise for Au. Cu
on the other hand seems to be more complex and the geometries with low and high Fano
factors are not easy distinguishable. The observations made in Ag are similar to the ones in
Cu but with much reduced probabilities (see table 5.2).

A problem arises when comparing this results with the experimental findings (Fig. A.10).
In contrast to the theoretical results, in experiments the low noise branch dominates by far
the picture. For Au this could mean that for much greater sample sizes27, the probability to
find parallel wires forming the second peak should be much larger than for the sizes which
are manageable by theory. For Ag and Cu no parallel wires were found so far. This does
not mean that they do not exist in experiments, our sample sizes are probably just to small
to be able to show them. As long as the dimensions of the calculated structures are much
smaller than in the experiments, it is not possible to exclude the possibility of parallel wires.

The most likely origin for the discrepancy seems to be the creation of the geometries which
were taken during an elongation with very high speed compared to experiments and with
semi-empirical potentials to describe the interactions, where small changes in the geometries
can have large effects in the transport properties [68]. The effect of velocity was checked to
play no important role within reasonable28 ranges. It will be shortly discussed in section 9.3.
But there are also other possibilities which could cause differences to the experimental find-
ings which are worth mentioning: The small system size and its connection to the leads
could cause additional noise, the parametrization of the tight-binding approach could be too
inaccurate or even the Landauer approach could be insufficient in some, yet unknown, sense.

The last item in the list of interesting observations, namely the appearance of higher channels

26Elongation and compression (negative elongation), see section 9.2 for more details.
27The experimental samples are much larger.
28Accessible with MD and statistics.



CHAPTER 5. RESULTS FOR AU, AG, CU, MG, AL AND PT AT 4 K 77

at 0.5 G0, was part of the discussion in [15]. The point is interesting because originally it
was thought that Au would not be able to show such a behavior. The reason for this is the
picture of a wire which breaks after forming a single atom contact. But as Au is a pure s
conductor one atom should only be able to connect one channel.
But before it was never thought of the existence of parallel wires. This is again the key to
solve the point: Multiple wires like the ones already shown in Fig. 5.14 who led to the low
noise values at 2 G0 can break at the same time, leading to two channels having about the
same values.

0.8 nm
1.0 nm

1.2 nm

τ i

Displacement [nm]

0.0

0.2

0.4

0.6

0.8

1.0

0.9 1.0 1.1 1.2 1.3

Figure 5.17.: Evolution of a Au structure at 4 K ending in two parallel wires breaking at the same
time. The conductance values of the above geometries are 12.7 G0, 4.8 G0 and 0.13 G0

with 22, 10 and 2 channels having at least a value of 0.01. The transmission eigenvalues
of the last geometry are 0.10 and 0.03. Below: Channel distribution of the elongation
process.

Another example is shown in Fig. 5.17. The vertical bars in the channel distributions in the
bottom of the figure mark the positions of the right two geometries from atop29.
An interesting behavior is the bunching of channels following the same trend (for example
channel 5 and 6 at the position of the first vertical bar in Fig. 5.17). This is not totally
unexpected because every compact region (separated part in cross section) of the wire which
breaks on its own has its open channels, its closed channels and a channel in-between. With
this interpretation the number of half open channels would give the number of compact
regions. But looking at the next example (Fig. 5.18) this interpretation seems not to be very
stringent.
Following the last two channels in both examples one can see that the wires do not break
perfectly at the same time but one slightly before the other30. Thermal fluctuations and
phonons can cause such differences even if the two wires would be (geometrically) identical.

29To present the channel distribution of the left geometry makes not much sense because a confusing number
of channels (22) are contributing.

30If one of the wires would be a long one, then a slightly displaced breaking would not lead to this behavior
because with high probability it would break too fast.
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Figure 5.18.: Evolution of a Au structure at 300 K ending in parallel atoms breaking at the same
time. The conductance values of the above geometries are 13.3 G0, 4.2 G0 and 0.15 G0

with 22, 9 and 2 channels having at least a value of 0.01. The transmission eigenvalues
of the last geometry are 0.09 and 0.05. Below: Channel distribution of the elongation
process.

But wires do not have to be separated that far laterally. Indeed, they even can be neighbor-
ing atoms. Such an example for Au at room temperature with the corresponding channel
distribution is shown in Fig. 5.18. Here the wires break edgewise, not like a thin wire. In
principle this could lead to a high number of slightly open channels, but at the end there
are usually slight variations in the distance, leading to channels closing faster than others.
While at low temperatures both possibilities contribute, at room temperatures no separated
wires were found. The explanation therefor could be that the individual wires at room
temperatures were too likely to fuse at the small distances possible in this calculations and
that it is energetically more unlikely to find two stable single atom wires. This difference
between room and low temperatures was already visible in the results of table 5.2 where the
question of parallel wires at 2 G0 was discussed.
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5.4. Thermopower

Extending the calculations of the transmission from τ(EF ) to τ(E), where the energy E =
EF±∆E is within a temperature dependent energy window ∆E around the Fermi energy, one
has direct access to the thermopower (or Seebeck coefficient) S which describes a potential
difference which appears as response to an applied temperature difference (S = ∆T/∆V ;
see section 2.4.2). The default number of integration points in this calculations for S is 11
(EF±5 points). This number is a compromise between getting an accurate description of the
energy dependency of the transmission around the Fermi energy and the calculation effort
needed for additional points31.

Figure 5.19.: Density plots of the thermopower data of 100 elongation curves each as function of
the total conductance. The densities are normalized to an upper limit of 9. The insets
are scatter plots of the data points.

The results are summarized as density plots with scatter plots for higher conductance values
as insets (Fig. 5.19). The monovalent metals and Al show a negative thermopower while Pt
has a positive one. Mg has a vanishing average thermopower.
The behavior of Au and Pt at that scale are interesting because they behave opposite to
each other and to what is known from bulk [16]. The sign can be explained with the energy
dependent DOS and the resulting slope of τ(E) near the Fermi energy. In Fig. 5.20 a Au
and a Pt example of the DOS for an atom in the constriction with only few atoms (around

31It does not scale directly with the number of data points because the charge neutrality loop which is in
most cases the most time consuming part of the calculation (� 80 % is not unusual), has to be done only
once.
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Figure 5.20.: Projection of the density of states (DOS) onto the central atom in a single atom
contact (upper row) as function of the energy-difference to the Fermi energy EF . The
orbitals are grouped in contributions from 3d, 4s and 4p orbitals and normalized by
the number of the corresponding orbitals. In the second column the total transmission
τ(E) of 4 Au and Pt geometries are plotted as function of E − EF . The geometries
are shown in Fig. 5.21 and the position of the atom for the DOS calculation is each
marked by an arrow.
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Figure 5.21.: Au (top) and Pt (bottom) geometries at 300 K used for the calculation of the curves
in the bottom row of Fig. 5.20. The number on top of each geometry corresponds to
the numbering of the curves in Fig. 5.20. The last geometry in each row was used for
the calculation of the DOS, the corresponding atom is marked by an arrow.

1 G0) of geometries achieved at room temperature as shown in [16] are presented32. Other
examples of monomers at 4 K were already shown in Fig. 5.10 of section 5.2.

32The explanation is equivalent for geometries achieved at low temperatures.
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The density of the dominant s orbital of Au is (monotonously) rising. So do the densities
of the p orbitals (specially pz) contribute to the increasing transmission. The sign of the
thermopower, which is inverse to the sign of the slope of the energy dependent transmission,
is hence negative.
Pt on the other side has additionally large d contributions and near the Fermi energy both,
s and d are decreasing with increasing energy. As both contributions are on a falling flank
the absolute slope of the τ(E) curve is relative large compared with the one of Au, which is
reflected in the relatively large thermopower data of Pt. The monomer in Fig. 5.10 shows a
slightly different behavior of s: It has a positive slope opposite to d. But in total dominates
the high negative slope of d and the transmission again has a negative slope which results
in a positive thermopower.

The explanation for the signs of Mg and Al are similar to each other (see Fig. 5.10). The
density of the p orbitals of Mg near the Fermi energy show almost a plateau while s has a
minima next by. The resulting slope of the transmission and therefore the thermopower is
very sensitive to the exact position of the Fermi energy with respect to this minima of s.
Hence it is reasonable to find a vanishing thermopower with a tendency to negative values
(Fig. 5.22).
For Al the negative slope of s competes with the positive one of p where for geometries larger
1 G0 p dominates the behavior of the transmission.
The results for the evolution of Au and Pt are in good agreement with the experimental
results from the group of Nicolás Agraït [16] measured at room temperature33 (Fig. 7.9). But
they also found that for Au the thermopower oscillates for small contacts with a frequency
of about 1 G0, where the minima of the absolute values of the mean thermopower are at the
maxima of the conductance histogram34.
The explanation is the same as for the minima in the Fano values: the opening of the
channels one by one. Due to that the transport at multiples of G0 is dominated by fully
open channels which leads to a flat evolution of the τ(E) curve near the Fermi energy35 and
with that to the suppression of the thermopower.
To analyze the theoretical results with respect to these oscillations, the mean thermopower
with standard deviation together with the conductance histogram are plotted in Fig. 5.22.
Unfortunately the experimental findings can not be reproduced very well. One can recognize
a reduction of the absolute value of the thermopower around 1 G0, but this is not satisfying
because there are sharp peaks before and after the maximum of the conductance histogram
which is not what is seen in the experiments. The first peak could be a problem of statistics
which is very low there.
A different point is the temperature. The measurements we compare here with were done
at room temperature while the theoretical ones are at 4 K and the relation could be more
difficult than just linear. And indeed the results shown later for 300 K (Fig. 7.9 in section 7)
show minima of the absolute value of the thermopower at about the first and second maxima
of the conductance histogram. The temperature modifies two things, the geometries probed
during the elongation and the energy window relevant for the integration of the transmission.
As the transmission behaves smooth and monotonous in a wide range around the Fermi

33One has to keep in mind that the thermopower is in first order linear in temperature.
34Similar experimental results at room temperature were found before from [81].
35Wouldn’t it be flat, then the channel distribution wouldn’t show this behavior (too unstable).
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Figure 5.22.: Conductance histogram (red) and mean thermopower (blue) with standard deviation
(light blue) as function of the total conductance.

energy, this means that at room and low temperatures different geometries are probed (at
least dominantly). Our results are mainly consistent with the ones from Pauly et al. [73] who
found in their calculations at 4.2 K a vanishing thermopower with the tendency to negative
values and with measurements from Ludoph et al. [80] at low temperatures who observed a
random distribution of the thermopower around zero.
But there is a second possibility: The system is too small. The influence of system size and
geometry will be discussed later, but indeed, for larger systems the two minima are again at
about 1 G0 and 2 G0 (Fig. 9.22). The sharp peaks have also vanished or are much reduced
in amplitude. Going the other way to smaller contacts the results for 4 K get worse (Fig.
9.28). But the reduction of thermopower at 1 G0 remains. At 300 K the small contacts are
behaving smooth, but the reduction at 2 G0 vanished (Fig. 9.34).

In total, both the temperature and the system size play an important role by explaining the
behavior of the thermopower.
The other two monovalent metals show a small dip near 1 G0. While the dip in Ag is at 1 G0

as is the peak in the conductance histogram, the dip in Cu is very broad and slightly shifted
to higher values.
For non-monovalent metals this behavior is not expected and especially not for Pt where the
dominant d orbitals are very sensitive to local disorder36, resulting in larger fluctuations in
the thermopower.

36Because of their anisotropy.
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5.5. Thermal conductance

The electronic part of the thermal conductance can be calculated using the same data as
before for the thermopower (see section 2.4.3).

κel =
2

hT

(
K2 −

K2
1

K0

)
(5.4)

The dimension of κel is [W/K]. To get the thermal conductivity in units of W
K·m one has

to multiply κel with the length of the system and divide it by its cross section. But this is
unusual for nanoscale systems because the cross section and in experiments also the length
of the system are not well defined. The resulting prefactor for the (ideal) initial geometry
where the three dimensions are well defined in the simulations is about 1

10 nm
= 108 1

m
. 37

Figure 5.23.: Density plots of the ratio of κel to L0TG of data from 100 elongation curves each as
function of the total conductance. The densities are normalized to an upper limit of
9. The insets are scatter plots of the data points. The impression that the uncertainty
has a well defined limit (1.0 ± ∆) is due to the plotting scheme which has a finite
resolution and the data points are represented by Gaussian with a fixed extend.

The question asked in this context is whether it differs from the linear regime as function of
the conductance known as Wiedemann-Franz relation

κel = L0TG (= L0TG0K0) (5.5)

37For Au at 4 K it’s about 0.08 W
Km and at 300 K about 5.6 W

Km ,
for Pt at 4 K it’s about 0.12 W

Km and at 300 K about 8.2 W
Km .
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with the Lorentz number L0 = (kB/e)
2 π2/3. To answer this the ratio of the two formulas

above is plotted in Fig. 5.23 for the different materials.
The results show no significant deviations from 1.00. The small and rare deviations in Cu
and Pt can be traced back to numerical problems which were negligible (in amplitude and
numbers) for the other properties38.
A problem could be that the integration points for the calculation of the charge are optimized
for special Au geometries. A hint in this direction is the observation that doing the charge
neutrality starting from a modified point (compared to the one which led to the results with
deviations) leads to the correct (linear) result. To prevent this problem one would have
to use a finer grid which would need a lot of extra computer time and only 0.8% of the
calculated Pt points (as worst example here) are beyond an error of 0.1%.
In total, at low temperatures within the resolution of the calculations no significant deviations
from the Wiedemann-Franz law could be found.

381 % deviation of the conductance at 1 G0 would mean an error in the order of 0.01 G0.



6. Spin-polarized materials Fe, Co
and Ni

Up to now the spin did not play any role in the calculations. But for ferromagnetic materials
like Fe, Co and Ni the spin plays a crucial role. This is known in the macroscopic world
(for example magnets) but as will be shown below it also plays an important role in the
understanding of properties of nanoscale materials.
In the semi-classical description of ferromagnetic materials by Mott [17] the current is di-
vided into electrons from two independent spin bands, the majority-spin and minority-spin
electrons. In this description it is assumed that the s orbitals dominate the conduction prop-
erties while the d orbitals are localized and are responsible for the net magnetization. Mott’s
theory is based on the Drude formula which is based on the electron density of the conduction
band which is assumed to be spin-independent and the inelastic scattering (relaxation) time
which is assumed to be spin-dependent. The relaxation time of the majority-spin electrons
is similar to that of spin-independent materials while that of the minority-spin electrons is
reduced by the scattering of electrons from s states to partially filled d states. The reduced
relaxation time of the minority-spin electrons is responsible for low conductivity values com-
pared to noble metals. Furthermore, the majority-spin electrons dominated conduction leads
in this model to a positive spin-polarization of the current.
As for spin independent (non-magnetic) metals there have been many experimental STM and
break-junction-based studies of ferromagnetic materials [45, 52, 83–114]. Some concentrated
on the observation of peaks in the conductance histograms at half-integer multiples of G0

[84,98–103]. They were interpreted as evidence for the theory that only spin-split fully open
channels contribute to their conductance. But experiments from Untiedt et al. [104] for Fe,
Co and Ni with break junctions under cryogenic vacuum conditions put this interpretation
in question. They didn’t find evidence for a fractional conductance quantization but found
a broad peak at 1 G0 instead. They suggested that the observed peaks at half-integer values
in the conductance histograms could be due to contamination.
Another discussion has to do with the observations that the anisotropic magnetoresistance
(AMR), which is an effect that shows a variance in the resistance as function of the rela-
tive orientation between current direction and magnetization and is based on the spin-orbit
interaction, exhibits an anomalous angular dependence in Fe [110] and Co [84] atomic con-
tacts. But they also found the occurrence of conductance jumps upon the rotation of the
magnetization which were interpreted as an effect of the so-called ballistic AMR. However,
as ferromagnetic atomic contacts are not expected to be ballistic this interpretation is ques-
tionable [72]. Shi et al. suggested that sudden atomic rearrangements could be the origin
for these jumps [177,178].
Both effects, half-integer quantization and ballistic AMR are not expected from the picture
of the conductance in these atomic contacts which is based on the Landauer approach [10,64].
Due to these controversies and the large interest in spin-dependent transport of nanoscale
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contacts, several theoretical groups have investigated the transport properties of ferromag-
netic atomic contacts [69,72,115–142]. Besides the conductance and the AMR, these studies
have addressed aspects like the electronic structure of ideal systems (for example monoatomic
wires), the influence of domain walls on electronic and transport properties, or the magnetic
structure.
In total, the reported theoretical results clearly suggest that in the atomic scale ferromagnetic
contacts, contrary to their macroscopic ones, the d orbitals play a fundamental role for
the transport properties. They also find no fundamental reason to expect conductance
quantization or full spin polarization.
However, these studies lack a systematic one-to-one comparison with experiments which
is difficult because it requires a simultaneous description of the detailed atomic structure
and transport properties of the contacts. A problem from the experimental side is the
lack of information about the channel distributions. This was an important step for the
understanding of the conductance of spin independent metals, but the method which uses
superconducting leads [64,179] is not usable in the case of ferromagnetic contacts. Therefore
no generally accepted picture for electrical conduction in ferromagnetic atomic contacts could
be established.
Recently Vardimon et al. [18,82] were able to surpass this problem by extracting the needed
data to determine the channel distribution of different ferromagnetic materials from shot
noise measurements at cryogenic temperature and vacuum conditions (see sec. 4.1 for details
of the method).

Figure 6.1.: Ideal start geometries of bcc Fe (left) and fcc Ni (right).

In this section the three ferromagnetic materials Fe, Co and Ni will be investigated and
compared systematically with the experiments from Vardimon et al. The experimental and
theoretical results were published in [18]. In the calculations the spins have different TB-
parameters and are considered as independent except for the determination of the charge in
the charge neutrality loop. The results can therefore be divided into the spin components
and the total as sum of those. The natural unit is now G0/2 = e2/h instead of G0 = 2e2/h
but for the most time the factor 2 will be put into the value1 resulting again in units of G0.
The initial geometries will be the same as before but while Ni and Co also have an fcc lattice
Fe has a bcc lattice (Fig. 6.1). The results of fcc and bcc Fe do not differ drastically. This
will be shown in a later section (sec. 9.5).

1As before for the results of the spin independent materials.
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In the following a similar analysis will be done as for the spin independent materials.

6.1. Conductance

Figure 6.2.: Density plots of the total conductance data of 100 elongation curves as function of the
displacement of their upper walls to the initial positions for the spin polarized materials
Fe, Co and Ni at 4 K. The densities are normalized to an upper limit of 9.
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Figure 6.3.: Conductance histograms (upper row) and mean spin polarization with standard de-
viation (lower row) of 100 elongation curves each at 4 K. The blue dashed lines are
experimental results from the group of Oren Tal2 [18].

In Figs. 6.2 and 6.3 the results for the conductance are shown in the known ways as function
of the elongation and as histograms. The density plot of Fe seems to be smeared out with

2The experiments in the group of Tal were done with the MCBJ technique at 4.2 K and 10−5 mbar with
notched wires. The experiments were done by Ran Vardimon.
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a large accumulation with a broad width at low conductance values which is reflected in
the histogram as broad peak between 1 and 2 G0. In the histogram additional peaks at 3
and 4 G0 could be interpreted as such. The first peak is shifted downwards with respect
to the experimentally observed one by roughly G0/2 (blue dashed line). The reason is
still unclear. Fe is the only bcc structure under investigation, but the fcc-calculations give
similar results (see section 9.5). So do the calculations with lower velocities. One uncertainty
remains in the parametrization of the MD-potential and the TB-parameters. While the TB-
parametrizations are all from the same source, the Fe potential had to be taken from a
different (much older) source than the others. But different MD potentials were tested
without much effect onto the conductance histogram3. An explanation for these could be
that while the potentials from Sheng et al. were derived by including huge amounts of
DFT calculations, the older potentials found were limited to experimental data only. As
consequence the older potentials could lead to slightly wrong energy landscapes in the vicinity
of low coordinated structures like few atom contacts, which would lead to a wrong mapping
of the different possible geometries.
As the Fano factor results (section 6.2) fit quite well to the experimental findings, 4 [18] the
TB-parameters seem not to be the main problem and therefore the results should be valid
also for the other electronic properties investigated here.
In contrast to Fe, Co and Ni show more clearly decay paths within the density. Also clear
transitions into the tunneling regime are visible, similar or even better than for Al, meaning
that the resulting geometries are very rigid and the last breaking bond does not lead to a
sudden jump in distance (see the discussion in section 5.1.1).

Figure 6.4.: Co in monomer and dimer structure. They are from the same curve and 0.09 nm of
elongation separated from each other. The conductance values are: 1.5 G0 with 3 and
5 channels in the two spin systems (τσ,i ≥ 0.01) and 1.3 G0 with 3 and 4 channels.

The peaks at about 1.3 G0 and 2.9 G0 with a shoulder to higher values for Co and at about
1.6 G0 for Ni fit very well to the experimental results (blue dashed line).
The first peak in Fe and Ni are as before in the spin independent materials the most dominant
ones. The first peak in Co at about 1.3 G0 is an exception, which means that these geometries
are much less stable than in other materials. It is built up by one-atom contacts, monomers
(one atom connects both halves of the former wire) and dimers (the two halves are connected
by a single bond) which is the usual mix for the first peak. An example for each of those
two types is shown in Fig. 6.4.

3Especially onto the peak-positions.
4The Fano factor is not totally independent of the results of the conductance histogram, but under the
assumption that the geometries (angles, distances, ...) found in theory are not much different from the
ones in experiment, only the frequency of occurrence (histograms) would be wrong.
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5

Figure 6.5.: Density plots of the minimal cross section (MCS) as function of the conductance. The
slopes for a linear fit (ax+ b) are 0.91 (Fe), 0.50 (Co), 0.49 (Ni) and 0.59 (Cu).5

Figure 6.6.: Geometries of Ni contributing to the first peak in the conductance histogram. The
values are: 1.9 G0 with MCS = 1.1 (first), 1.5 G0 with MCS = 0.7 (second) and
1.3 G0 with MCS = 0.9 (third). The last geometry is the same as the third but with
enhanced diameter of the spheres representing the atoms.

In Fig. 6.5 the relation between the minimal cross section (MCS) and the conductance of
the structures is shown for all three materials including Cu as comparison. The relation
is interesting because according to the Sharvin formula (see sec. 2.2.1) there should be a
univocal relation between both. The figure shows how uncertain the mapping to one another
is. While it still fits quite well for Cu, the conductance values are much more spread for a
given MCS value (and vice versa) for the ferromagnetic contacts.
A second problem exists in the mapping between MCS value and geometry, which is also
not unique. These problems are demonstrated on an example in Fig. 6.6. All three shown
Ni geometries contribute to the (relative broad) first peak in the conductance histogram.
While the MCS vs conductance works fine within the range of single atom contacts (first
and second geometry), it fails to include the third one which constitutes out of parallel atoms
in an elongated state. The low MCS value in that geometry is due to only small overlap of
the two parallel atoms to their opposite ones as is depicted in the last column of Fig. 6.6.
But despite these deviations, the linear relation expected from Sharvin’s formula does work
on average, but not for the individual geometries.

5Using ax instead would give: 0.98 (Fe), 0.52 (Co), 0.54 (Ni) and 0.64 (Cu)
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In the second row of Fig. 6.3 the spin polarization of the conductance (or current) as relative
difference between the spin channels is shown. It is defined as

Polarization =
I↑ − I↓
I↑ + I↓

(6.1)

According to the Mott theory the spin polarization should be positive because the transport
should be dominated by the majority-spin (↑) electrons. While this was experimentally
shown to be correct for larger structures6 [180], this is not what can be seen in Fig. 6.3. Co
and Ni have a strictly negative polarization above the single atom contact regime and relative
large fluctuations below. The polarization saturates slightly below −30 %. In contrast Fe
saturates at vanishing spin polarization after it exhibits a sign change at about 5 G0. The
results in the single atom range (around 2 G0) are similar to the others, but below that, the
fluctuations are even higher. This can be explained by the relative small contribution of the
spin-down (minority spin) compared to the other ferromagnetic materials (see discussion of
channels below) 7.
It is interesting to note that the presence of spin-down d states at the Fermi energy (see
Fig. 6.9) leads to a reduction of the conductance of the minority-spin in the bulk case and
therefore, to a positive spin polarization, but in the case of few atom contacts of all three
materials to additional channels resulting in an enhanced conductance of the minority-spin
and therefore a negative spin polarization.
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Figure 6.7.: Conductance histograms for the same data set than in Fig. 6.3, but for each spin
separately. The unit is therefor 1

2G0. The histograms of Fe and Ni are cut at 30 % and
60 % of their particular total height to enhance smaller peaks (like for Au and Cu in
Fig. 5.4). The scaling factor is the same for the spin-up and the spin-down histograms.

Fig. 6.7 shows the histograms of the spin-up and spin-down components separately8. One
can see that for example the broad Fe peak at about 1.7 G0 is built up by a relative sharp
spin-up peak at about 1.0 G0/2 and a broad peak at about 2.0 G0/2.

6Larger means far away from the range of single atom contacts.
7Compare for example the heights and numbers of spin-up and down channels at 8 G0 between Fe, Co
and Ni in Fig. 6.8. The sum of the values of the spin-up and spin-down channels has to be the same
(τ =

∑
i,σ τi,σ = 8).

8The sum of both histograms does not correspond to the histogram of the total conductance in Fig. 6.3.
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The behavior of the two spin systems are in general very interesting, while the spin-up
histograms of Fe and Ni look like Au, their spin-down histograms look more like Pt (see Fig.
5.4). This observation will be discussed more deeply looking at the Fano factors of these
materials. Co seems to be more difficult.

Figure 6.8.: Mean channel distributions of the spin up (upper row) and spin down (lower row)
channels with standard deviations of the 10 highest channels of 100 elongation curves
each as function of the total conductance.

As already noted in previous chapters the channel distribution gives hints to the polarization
and the orbital nature of the spin system. For Fe the transmission is first dominated by the
first channel of the spin-up system leading to a positive polarization. But at 1 G0 there
are already more than three spin-down channels partially open, while there is still only one
in the spin-up system leading to a negative spin-polarization. But because of relative low
slopes of the spin-down channels the polarization tends to an unpolarized system at 8 G0. Co
first behaves similar, but at 1 G0 there are about the same number of spin-up channels and
spin-down channels leading to an unpolarized system. But while there is a gap between the
third and fourth spin-up channel, there is none in the spin-down system leading again to a
negative spin-polarization. For Ni the first spin in both subsystems behave at the beginning
similar but at about 1 G0 spin-down again dominates the conductance with more available
channels than the spin-up system.
So in total the channel distributions of the two spin systems evolve in all three materials very
similar leading to very similar polarization as function of the total conductance. Deviations
are at very small conductance values and due to different slopes of the channels in the
spin-down system at higher conductance values.
The opening of the spin-up channels especially in Ni resembles that of the monovalent metals
which are s dominated conductors. The spin-down channels on the other side remembers
more on Pt which has large d contributions.
This can be analyzed further by looking at the spin dependent DOS calculations of Ni as
example for the ferromagnetic materials and of Cu as example for the monovalent metals.
Fig. 6.9 shows for both metals the DOS of a monomer and the one of bulk [18].
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Figure 6.9.: Density of states (DOS) for bulk (upper row) and its projection onto the central atom
in a single atom contact (middle row) as function of the energy-difference to the Fermi
energy EF . The first two columns are Ni, divided into spin up and spin down electrons
and the third column is Cu. The orbitals are grouped in contributions from 3d, 4s and
4p orbitals and normalized by the number of the corresponding orbitals. In the third
column the total transmission τ(E) of 4 Ni and Cu geometries are plotted as function
of E − EF . The transmission of Ni is as in row one and two divided into the two spin
directions. The geometries are shown in Fig. 6.10 and the position of the atom of the
DOS in row two is marked by an arrow. The bulk data are from private communication
from Juan Carlos Cuevas.

While for Ni bulk in both spin directions the d orbitals play the most important and the
s orbitals a minor role (first row), for spin up the situation changes considerably going to
one atom contacts (second row) where both contribute similar. In contrast, the spin down
d orbitals are shifted energetically with respect to the Fermi energy resulting in a still d
dominated regime. This is reflected in the total transmission functions (bottom row) which
shows that for spin up the Fermi energy is on the right side of the flank and for spin down
at its peak.
Cu shows a similar behavior for the few atom contacts as the spin up part of Ni. This is in
contrast to the bulk behavior, where the Fermi energy of Cu is still far on the right side of
the DOS for the d orbitals, different to Ni. Having a look at Fig. 5.20 where on the right
part the results for Pt are shown, one finds similarities with the spin down results of Ni, as
already hinted. But the similarities are only for the d orbitals and the total transmission, not
the contributions from s orbitals. The s orbitals show the same behavior and contributions
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1 2 3 4

5 6 7 8

Figure 6.10.: Ni (top) and Cu (bottom) geometries at 4 K used for the calculation of the curves in
the bottom row of Fig. 6.9. The number on top of each geometry corresponds to the
number of the curves. The last geometry in each row was used for the calculation of
the DOS, the corresponding atom is marked by an arrow.

than the d orbitals in Pt while for Ni the d orbitals contribute three times more in average9.
The different transmission curves in the last row show that this explanation is not only valid
for the monomer for which the density is shown, but also for higher conductance values of
thicker wires.
The p orbitals were not discussed here because they do not contribute significantly in the
few atom contacts (in contrast to the bulk, but this behavior is similar in all three cases).

In total the different behavior of the spin directions can be traced back to a relative shift in
energy of the orbitals with respect to each other. In the shown example the relative shift is
in the order of 1/2 eV.

9The orbitals are normalized by their numbers, so 1 for s, 3 for p and 5 for d.
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6.2. Noise

Similar to the spin independent metals the Fano factor gives access to information about the
channel distributions. The experiment has only access to the total Fano factor(
F =

∑
i,σ τi,σ(1− τi,σ)/(

∑
i,σ τi,σ)

)
, but the theory is able to divide it again into the two

spin-systems
(
Fσ =

∑
i τi,σ(1− τi,σ)/ (

∑
i τi,σ)

)
. So while the total Fano factor is important

to compare with experiments, the spin dependent plots give more insight into the physical
backgrounds.

Figure 6.11.: Density plots of the Fano factor data of 100 elongation curves each as function of
the total conductance. The upper row is the Fano factor of all channels, the lower
two rows show the Fano factor of the individual channels normalized by their channel
conductance. The densities are normalized to an upper limit of 9. The insets are
scatter plots of the data points.

Different to the spin independent metals the total Fano factor of the spin dependent metals
have a second line (red) which presents the minimal Fano factor for full spin-polarization
(F pol

min), which is lower than the unpolarized one (Fmin). They are given as function of the
total transmission τ by

Fmin(τ) = 1−
[
int(1τ) + {τ · 1− int(1τ)}2

]
/ [1τ ] (6.2)

F pol
min(τ) = 1−

[
int(2τ) + {τ · 2− int(2τ)}2

]
/ [2τ ] (6.3)

They are derived using the assumption that the channels open one by one up to full trans-
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mission10 (lowest possible Fano values). This means that the measured Fano factor can
already give a hint for spin-polarization. Even the (minimal11) degree of polarization can be
estimated if the measured point is below the Fmin curve [181, Fig. 4].
The results in Fig. 6.11 show a few data points of Fe in the tunneling regime below 1 G0 and
at about 1.3 G0 between the Fmin and the F pol

min lines. Co only shows data points between
the two lines in the tunneling regime and Ni does not show such points. The experimental
results from Vardimon et al. [18] (and in Fig. A.10) do not show any hint of polarization.
The spin resolved results reveal two interesting points, namely that the spin-up values are
much lower than the spin-down ones and that the spin-up results show regions with largely
suppressed Fano factors and large spread at the same time while the spin-down results don’t
show this in a significant manner. This reminds again of the difference between the results for
the monovalent metals and Pt. While the monovalent metals show suppression at multiples
of G0 and a bridging12 of the dip at 2 G0, Pt shows mainly a suppression at 2 G0 and has in
total much higher values.

Fe Co Ni
total 0.28± 0.02 0.27± 0.02 0.24± 0.02

spin up 0.21± 0.02 0.21± 0.02 0.16± 0.03

spin down 0.35± 0.02 0.30± 0.02 0.28± 0.02

Table 6.1.: Overview of the convergence results. The results are gained by fitting the Fano values
above 5 G0 by a horizontal line. Compare Table 5.1 for the values of the spin independent
materials.

To get values which are more easy to compare one can look at the convergence fits (table
6.1). There the spin-up values converge near 0.2 (Au was at 0.16) and the spin-down values
around 0.3 (Pt was at 0.27).
Ni is with 0.16 for spin-up and 0.28 for spin-down within the error at the values of Au and
Pt. The other two have slightly higher noise values.

Related to this is the question of how close to the bimodal distribution the channel distri-
butions at 15 G0 are (Fig. 6.12). As result one can say that they are all closer than the
results shown for the spin independent metals except for Pt. The spin-up results of Fe and
Ni deviate most from the bimodal distribution as could be expected from the convergence
results of the Fano factor, but Co spin-up which has the same convergent value as Fe spin-up
looks almost perfectly fit to the black line. That the spin-down results fit quite well to the
bimodal distribution could again have been suspected.

Looking at the evolution of this histograms by making one at 2 G0 one finds that the spin-
down results of all three materials still look similar, having a sharp and strong peak at very
low transmissions and a broad peak below and above one half and no contributions from
fully open channels.

10For example τ = 1.9 would mean τ1 = 1, τ2 = 0.9. τ = 2.1 would mean τ1 = 1, τ2 = 1, τ3 = 0.1.
11Spin-polarization lowers the Fano factor, but even full spin-polarization could lead to values above the

Fmin curve (it is only the minimal possible value).
12The ‘two ways’.
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Figure 6.12.: Histograms of the transmission coefficients at a total conductance of 15±0.125 G0. The
results are separated into the contributions from the spin-up channels (up) and spin-
down channels (down). The lines are the fitted bimodal distributions P (τ) (equation
5.3).
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Figure 6.13.: Histograms of the transmission coefficients at a total conductance of 2 G0.

In contrast the spin-up histograms of Fe and Ni have a low and a high conductance peak with
fully open channels. So the negative spin-polarization is due to a high number of slightly
open spin-down channels which oppose a small number of fully and almost closed spin-up
channels. The Co spin-up histogram is again more similar to the spin-down one but having
no peak at very low eigenvalues. Instead it has fully open channels like in the other two
materials.

This information can partially be seen in the mean channel distributions of Fig. 6.8, too.

The Fe and Ni spin-up histograms are already similar to the Au results, but not for Au at
2 G0 but rather at 1 G0 (see Figs. A.8 and A.9 in the appendix). This can be understood by
considering the effect of the spin-polarization of about −0.3 at 2 G0 (Fig. 6.3) which means
that spin-down contributes on average with about 2.6 G0/2 and spin-up with about 1.4 G0/2,
which is near 1 G0. 13

13In the spin independent picture both spin directions would contribute 2 G0/2 = 1 G0.
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6.3. Thermopower and thermal conductance

Thermopower and thermal conductance are gained by integrating the energy dependent
transmission (with some prefactors) around the Fermi energy (equation 2.181). Therefore
these values are very sensitive to the orbital structure of the materials. In the earlier sections
we have seen that the d orbitals play an important role in the understanding of the properties
of these ferromagnetic metals. As this was also the case for Pt we expect similar results.

Figure 6.14.: Density plots of the thermopower data of 100 elongation curves each as function of
the total conductance.The densities are normalized to an upper limit of 9. The insets
are scatter plots of the data points.

<
S

>
 [µ

 V
/K

]

Fe

#G
<S>

-0.2

-0.1

0.0

0.1

0.2

 0  1  2  3
Conductance [G0]

Co

 0  1  2  3 co
un

ts
 [a

rb
. u

ni
ts

] Ni

 0  1  2  3  4
0

0.2

0.4

0.6

0.8

Figure 6.15.: Conductance histogram (red) and mean thermopower (blue) as function of the total
conductance.

And indeed, comparing Figs. 6.14 and 6.15 of the ferromagnetic metals with Pt in Figs.
5.19 and 5.22 one finds very similar results: a large spread of the density around zero and
huge fluctuations of the mean. But while the mean of Pt still had a positive preference,
it fluctuates around zero for the ferromagnetic materials with a slight tendency to negative
values.
Similar results for the thermal conductance (Fig. 6.16), while Pt was prone to numerical
problems so are Co and Ni. Fe interestingly not. The problems arise as before for Pt only
in the limit of a few G0. In numbers, about 1.4 % of Co and 0.2 % of Ni data points (above
0.1 G0) have a deviation greater than 1 %. But without explicit testing one can not exclude
all points as numerical cases but the tests done so far indicate that at least most of the points
deviate due to numerical issues. Therefore the Wiedemann-Franz law is perfectly fulfilled
for (almost) all points.
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Figure 6.16.: Density plots of the ratio of κel to L0TG of data from 100 elongation curves each as
function of the total conductance. The densities are normalized to an upper limit of
9. The insets are scatter plots of the data points.



7. Results for Au, Pt and Ni at room
temperature

Most applications in daily life are not designed to work at very low temperatures, but rather
at room temperature where no cooling is needed. Room temperature means in our case 300 K.
Some experiments at room temperature were already mentioned. Examples are the ones on
thermopower which found non-vanishing average values for Au with oscillations as function of
the contact size [16,81] which contradicts the low temperature experiments and calculations
[73,80]. For bulk materials it is known that different to low temperatures where the phonon
drag contribution plays an important role, the thermopower is dominated by the electron
diffusion contribution [17, 182]. Thus the sign and magnitude of the thermopower of bulk
metals at room temperature depends mainly on the energy dependence of the conductance
around the Fermi energy and therefore on the characteristic density of states around the
Fermi energy. But as we already have seen in the last sections, the density of states of few
atom contacts differ clearly from those of bulk systems. Hence it is reasonable that the sign
and amplitude of the thermopower results could depend on both, size and temperature.
Other recent room temperature experiments looked for example for the conductance and
shot noise and their variances [183–185].

Figure 7.1.: Density plots of the total conductance data of 100 elongation curves each as function
of the displacement of their upper walls to the initial positions. The densities are
normalized to an upper limit of 9.

Temperature in the context of theoretical simulations means first of all the kinetic energy in
the MD calculation which should modify the behavior of the materials during the elongation
process. It should make configurations less stable because more energy is available to over-
come barriers, but also geometries not known from low temperatures could be possible [5].
This modifications in the geometries are the basis for the modifications in the statistical
results.
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A second point where the temperature explicitly is included is the energy window needed for
the calculations of the thermopower and the thermal conductance. The thermal conductance
has in addition an explicit temperature dependence1.
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Figure 7.2.: Conductance histograms (upper row and lower row left) and polarization of Ni (lower
row right) of 100 elongation curves each as function of the total conductance. The blue
curves are the experimental results from the group of Nicolás Agraït2 [16] and the
green ones are from the group of Douglas Natelson3 [15], both at room temperature.
The insets show the same theoretical results up to 15 G0.

The analyzes of the effects were done for three materials Au, Pt and Ni that were studied in
previous sections at low temperatures. The initial geometries with 563 atoms in the central
wire are the same as in the 4 K studies and the results will be presented in the following in
an equivalent manner.

The total conductance results as function of the displacement are similar to those at low
temperatures, but for Au the plateau at 1 G0 is much shorter and in total much less pro-
nounced (Fig. 7.1). This is also reflected in the conductance histograms (Fig. 7.2), but there
it is visible that it does not only concerns Au, but the first peak of all three materials. That
can be explained in terms of kinematics where energy barriers, separating different geometric
configurations, can be more easily overcome4 at higher temperatures (energies). This effect
also leads to less variation in the paths seen in the displacement curves and should lead

1See section 2.4.2 and 2.4.3 for further details.
2The experiments in the group of Agraït were done with an STM setup with notched wires at room
temperature. The temperature differences for the corresponding thermopower measurements were chosen
between 20 and 40 K. The statistics include 909 Au and 216 Pt traces. The experiments were done by
Charalambos Evangeli and Laura Rincón-García.

3The experiments in the group of Natelson were done with an STM setup at room temperature in air with
a bias of 180 mV. The statistics include 816 traces.

4Atomic reorganizations.
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to less pronounced higher peaks in the histograms. But for Pt, in contrast, peaks at about
2.0 G0, 2.7 G0 and 3.8 G0 are visible while in the low temperature results only a peak at 1.8 G0

clearly appears. The mechanism behind it is unclear. It seems that at higher temperatures
Pt is able to achieve more stable configurations not easily accessible at low temperatures.
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Figure 7.3.: Geometries of Pt at 300 K with 3.0 G0 and 2.9 G0 (first and second geometry, belong-
ing to one curve) and 3.8 G0, 3.9 G0 and 3.9 G0 (geometries 3 to 5, belonging to one
curve). The first two geometries are separated by 0.17 nm, geometry three and four
are separated by 0.09 nm and four and five by 0.05 nm of elongation5 . Below are the
conductance and channel transmissions of the two curves. The gray bars mark the
positions of the geometries above.

Pt geometries of two curves with long lifetimes, one at the second peak and one at the third
peak, are plotted in Fig. 7.3. The difference between the two geometries of the first curve
are only elastic elongation of the bonds between the atoms. In this way the geometry is
very stable and survives more than 0.17 nm of elongation6. The same can be told about the
first two geometries of the second curve. But the third geometry of the second curve which
still has about the same conductance looks different and is not very stable. It gets modified
several times during the 0.06 nm of elongation during which the plateau exists.

For Ni the situation is different. There the higher temperature seems to reduce the range of
elongation paths: It takes about 0.1 nm longer to reduce the conductance below 10 G0 and
about 0.2 nm more to break compared to the low temperature results. At the same time
the time needed to fall below 10 G0 stays similar and for breaking even reduces slightly by
0.1 nm.
The difference can be explained with the geometries shown in Fig. 7.4: The higher tem-
perature of 300 K and with that the higher kinetic energy allows a reconstruction of the
surfaces during the elongation process, leading to two conical halves touching each other at

5The corresponding times are: 440 ps (geometries 1 and 2), 240 ps (geometries 3 and 4) and 120 ps (geome-
tries 4 and 5). The conductance time-step is 40 ps, the MD time-step is 1 fs.

6Elongation means elongation of the walls.
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Figure 7.4.: Left: A typical geometry of Ni at 300 K shortly before rupture. The rupture proceeds
smoothly, meaning that the two halves keep their geometries while the one bond con-
necting the parts breaks in a continuous way. Right: A geometry before and after
breaking which was only found at 4 K. Here the rupture process is not smooth, but it
breaks in a very short timescale in connection with a snapping back of the atoms in the
connection onto the lower part.

their tips (left geometry in Fig. 7.4). At low temperatures, on the other hand, the kinetic
energy is not high enough for this reconstruction, leading to surfaces which are locally well
ordered. Furthermore, at low temperatures it is possible to create small wires with two
atoms in diameter, leading to the second geometry in Fig. 7.4 shortly before rupture. At
room temperature the geometry would have been relaxed to an energetically more preferable
(broken) configuration. This elongated structure rips in the way already seen for Au chains
in Fig. 5.3 of section 5.1 (right geometry in Fig. 7.4).
This faster decay compared to low temperatures leads to a reduction of data points at low
conductance values which is visible in the overall height of the conductance histogram but
also in the density plots like for the Fano factor or thermopower data.
The mean polarization of Ni has not changed in comparison to the low temperature calcu-
lations.
The room temperature results from Evangeli et al. (blue lines in Fig. 7.2) show clear peaks
in the Au histogram at about 1.2 G0, 2.1 G0 and 2.9 G0 which is slightly shifted upwards by
about 0.2 G0 with respect to the theoretical ones here. The results for Pt in the same work
show small and broad peaks at about 1.6 G0 and 2.5 G0. This time the shift is in the opposite
direction by about the same amount of 0.2 G0. Similar is the crossing in the relative peak
heights between the experimental and theoretical histograms: While the experimental Au
histograms show the better pronounced ones, for Pt they are better pronounced in theory.
Other experimental results from the literature (for example the green line in Fig. 7.2) show
much better agreement with our theoretical results.
The Ni histogram7 was investigated by Moriguchi et al. [186] in 2012 with the MCBJ tech-
nique at room temperature8. Their histogram shows weak and very broad peaks at about

7Together with Fe and Co.
8The experiments of Moriguchi et al. were done with the MCBJ technique at room temperature with a
pressure of 2 · 10−10 mbar and at a separation speed of the leads of 0.7 pm/s. The bias was set constantly
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2.5 G0 and 5 G0 which they interpreted as background. This is in contrast to the theoretical
results in Fig. 7.2 where at least one clear peak at about 1.8 G0 can be found9.

Figure 7.5.: Mean channel distributions with standard deviations of the highest 10 channels of 100
elongation curves each as function of the total conductance.

The mean channel distributions (Fig. 7.5) are almost identical to their counterparts at low
temperature. An exception is Au at about 0.5 G0 where the peak of the second channel is
much less pronounced at room temperature. This is due to the already discussed reduced
probability of parallel wires (see section 5.2).

Au Pt Ni (total) Ni (spin up) Ni (spin down)
0.15± 0.02 0.27± 0.02 0.25± 0.02 0.16± 0.02 0.29± 0.02

Table 7.1.: Overview of the convergence results. The results are gained by fitting the Fano values
above 5 G0 by a horizontal line.

The Fano factor shown in Fig. 7.6 for room temperature looks very much the same as for
those materials at low temperatures with a few exceptions. The tendency goes to slightly
smaller values of about 0.01. This could mean that the geometries are slightly more relaxed,
meaning that they achieve energetically more preferable configurations as compared to their
low temperature counterparts. This is reasonable considering the higher kinetic energy with
respect to the energy barriers between different local minima in the configuration space and
was already discussed for Pt above in context of Fig. 7.4.
The results for the fitted horizontal lines for the plateaus at higher conductance values (Table
7.1) are within the error the same as for the low temperature cases which is also reasonable

to 100 mV. The statistics includes 5100 traces on 4 specimens.
9In the experimental histogram a small peak at about 1.7 G0 could be interpreted as real, but it is more
likely noise.
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Figure 7.6.: Density plots of the Fano factor data of 100 elongation curves each as function of the
total conductance. Ni is divided into three panels: the total Fano factor (lower left)
and the Fano factor of the individual channels normalized by their channel conductance
each as function of the total conductance. The densities are normalized to an upper
limit of 9. The insets are scatter plots of the data points. The green-white dotted line
in the Au plot presents the mean results from experiments of the group of Douglas
Natelson [15].

because the larger structures10 are more stable against temperature compared to the ones
with only few atoms in the bottleneck at small conductance values. Therefore one expects
only small modifications of the available configuration space11 at room temperature, far
below the melting temperature of about 1337 K for Au ( [187])12.
For Au the ‘two ways’ going from 1 G0 to 3 G0 discussed intensively for the low temperature
Fano factor results are smeared out as expected for higher temperatures and the very low
branch is now missing. The latter is again due to the loss of parallel wires summing up to
2 G0.
The distribution of the transmission coefficients at 15 G0 is as expected qualitatively the
same as at 4 K (Figs. 5.12 and 6.12): Au and Ni spin-up are far away from the bimodal
distribution while Pt and Ni spin-down are more close. The Ni histograms constitute of only
relative few data points, but at least the trend is visible.
The thermopower results shown in Fig. 7.8 look similar to the results at low temperatures
taking in account the different scaling because of the approximately linear dependence of
the thermopower from temperature. An exception is Ni where a shift to positive values
can be seen. The mean thermopower in Fig. 7.9 shows more: For Au the strange peaks
around 1 G0 are gone and there are clear minima in the amplitude at the positions of the

10Needed to get higher conductance values.
11Geometries
12Pt: 2041 K, Ni: 1728 K [187].
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Figure 7.7.: Histograms of the transmission coefficients at a conductance of 15 ± 0.125 G0. Ni is
separated into the contributions from the spin-up channels (up) and spin-down channels
(down). The lines are the fitted bimodal distributions P (τ) (equation 5.3).

Figure 7.8.: Density plots of the thermopower (upper row) and the ratio of κel to G0L0TK0 (lower
row) data of 100 elongation curves each as function of the total conductance. The
densities are normalized to an upper limit of 9. The insets are scatter plots of the data
points with its mean values as black line. As guide for the eye a black dotted line is
plotted into the thermopower insets.

maxima of the conductance histogram. Especially at 1 G0 the thermopower almost vanishes.
This is consistent with the experimental results from Evangeli et al. [16] (dotted lines) and
was already discussed in the context of the results at low temperatures (section 5.4). For
Pt the mean values are strictly positive without the dip at 1.8 G0 which was seen at low
temperature, consistent with the experimental findings (dotted lines).
Finally Ni has changed its oscillatory behavior around 0 at low temperature to a finite, pos-
itive mean thermopower with large fluctuations.

The results for the thermal conductance of Pt and Ni (second row of Fig. 7.8) shows large
enhanced deviations compared to their low temperature results. Au on the other side shows
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Figure 7.9.: Conductance histogram (red) and mean thermopower (blue) with standard deviation
(light blue) as function of the total conductance. The dotted lines are the experimentally
determined results for the conductance of Au (red) and thermopower of Au and Pt
(blue) from the group of Nicolás Agraït2 [16].

again almost the perfect linear conductance dependence of the Wiedemann-Franz law.
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Figure 7.10.: Parameter tests for the calculation of the conductance and thermal conductance for
a Pt elongation curve. The red curve is with 149 optimized sampling points for the
integration of the (energy dependent) density (file) in the charge neutrality loop and
11 τ(E) points (EF ± 5 points) for the calculation of the thermopower and thermal
conductance (the default). The relation between κel and L0TG is plotted with an
offset to be centered around 0 instead of 1 as in the plots before and the deviation to
1 is enhanced by a factor of 1000 according to the left axes. The black dotted line at
0 is a guide for the eye.

To test if this is again only a numerical problem, a Pt opening curve was calculated using
the default file with 149 sampling points with optimized positions along the integration line
for the calculation of the (energy dependent) density in the charge neutrality loop with
different numbers of the total transmission as function of energy for the calculation of the
thermopower and thermal conductance. Further more two sets of equally spaced sets of
integration points for the density were tested. The results are presented in Fig. 7.10. The
features are in all sets the same. Most deviation shows the yellow one which is with 150
equally spaced integration points the most imprecise one. The effect of the number of total
transmission points is negligible.
As result one can state that the deviations from the Wiedemann-Franz law are, different to
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those at 4 K, no numerical artifacts, but physically relevant results.

This result can be expected looking at the energy dependence of the transmission near the
Fermi energy (Figs. 5.10 and 5.20). While it is relative flat on a longer range in Au, it is
strongly energy dependent in Pt. The latter is also the case for Ni (Fig. 6.9). While the
important energy window increases with increasing temperature, the non-linearity grows in
importance with growing temperature and leads to deviations from the linear law.





8. Influence of the crystallographic
elongation direction on Al

Up to now every wire was elongated in the 〈100〉 direction. But is it really the experimental
relevant case and what is the difference if one elongates into other directions?
This questions arose in the context of electromigration experiments from Christian Schirm et
al. who established bistable switches of Al at the nanoscale with conductance values of the
plateaus in the order of a few G0 [14]. The theoretical analysis shows that this switches can
be realized by geometric configurations who have to switch only the position of one atom or
to break/reconnect a few bonds. While in the context of [14] this was only demonstrated in
the 〈111〉 direction, this will be shown in the following also in the 〈100〉 and 〈110〉 directions.
To do this 500 curves of each direction were calculated at a temperature of 0.25 K.
Additional analysis like in the sections before will be presented to compare the three direc-
tions with each other and with known experimental data.

8.1. Comparison between elongation directions and
with experimental data
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Figure 8.1.: Experimental conductance histograms (upper row) and channel transmission histograms
at 1 ± 0.125 G0. Samples A (28863 points at 0.25 K), B (433 points at 0.25 K) and C
(7855 points at 10 K [188]) are from the group of Elke Scheer. The histogram in the
background is from B. Ludoph et al. [189] and includes 2800 traces. Sample A’ is a
subset of A where besides the conductance the channel transmission was determined.

Some experimental (MCBJ) results are summarized in Figs. 8.1 and 8.2. The aim of sample
B was to get good channel measurements in combination with electromigration experiments
(see next section). They are mainly from the group of Elke Scheer, but also data from other
groups are included for comparison. The histograms show peaks at around 0.7 G0 and 1.8 G0.
The mean channel distributions around 1 G0 show mainly small channel openings, some
intermediate ones and (almost) no fully open ones. The effect of this channel distribution is
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Figure 8.2.: Experimental conductance histogram (upper left), mean channel distribution (lower
left) and Fano factor density (upper right) with mean value 〈F 〉 and standard deviation
σF (lower right) from sample B. The results are partly published in the supporting
information of [14]. In the Fano factor density results from Brom et al. from [190] are
included as points with error bars.

that at 1 G0 the first channel is in mean far from completely open (shown for sample B in
Fig. 8.2). The slow opening of the first channel is compensated by a bunch of other channels
opening at the same time. The corresponding Fano factor distribution shows relative high
values (consistent with the direct measurement of Brom et al. [190]) with only a small dip
of the mean and a peak of the standard deviation at 1 G0.
Beginning the theoretical results as usual with the conductance versus displacement density
plots (upper part of Fig. 8.3) one finds three very different behaviors for the three different
elongation directions and they differ all by what was shown for the larger contacts elongated
into the 〈100〉 direction (Fig. 5.2). Most significant is the position and spread in displace-
ments at which the contacts break. While it was with roughly 0.5 nm relative sharp for
the large contacts between about 1.5 and 2.0 nm, the small ones break with an about three
times larger spread starting at about 1.0 nm in the 〈100〉 and 〈111〉 and at about 1.5 nm
in the 〈110〉 direction. Because of the smaller structures the shift to smaller displacements
at rupture was expected. The 〈100〉 direction has the smallest spread of this three and the
〈111〉 the largest.
The force needed to elongate the wire further (bottom line in Fig. 8.3) shows as expected a
roughly linear decay1 with large spread.
An exception is the 〈110〉 direction below about 1.2 nm which shows an increase with very
low spread. This can be explained with the example shown in Fig. 8.4: The first rupture
at 0.11 nm leads to grain boundaries (blue circle in geometry 2) moving towards the walls
with every rupture (geometry 2 to 4). The new phase under tension is also fcc-like, but with
a different orientation. The following geometric reorganizations need less force and due to
the symmetry of the processes about the same amplitude. This changes after about 1.4 nm

1With decreasing cross section in the bottleneck the number of bonds which have to be elongated also
decreases.
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Figure 8.3.: Density plots of the total conductance (upper row) and force (lower row) data of 500
elongation curves with about 300 atoms (288 for <100> (first column), 316 for <110>
(second column), 301 for <111> (third column)) in the central wire each as function
of the displacement of their upper wall to its initial position for Al. The densities are
normalized to an upper limit of 9.

(geometry 5) where the rupture does not modify the borders between the two highly sym-
metric phases any more but leads to a constriction with disorder (blue circle) which behaves
as known from other materials and the other two elongation directions. Geometries 3 and
4 are similar in symmetry and hence have very similar conductance values. The range in
between shows several geometric rearrangements and therefore no flat conductance plateau.
The new phase which seems to be energetically preferred with tension disappears after the
breaking (geometry 7).

As most properties are not shown as function of the displacement but as function of the
conductance2 Fig. 8.5 shows again the force needed to elongate the wire further, but this
time as function of the total conductance with mean value and standard deviation. Starting
from 1 G0 upwards, the relation between those two properties is mostly linear3.
But the detailed mapping is not so easy as the example in Fig. 8.6 shows. There are well
defined regions as for example the increase in force going from 14 G0 to 13 G0 which is just
the region around geometry 2 in Fig. 8.4 and shows an elastic deformation4 in combination
with a decreasing conductance till a plastic deformation5 leads to an abrupt decrease in the
force curve. But there are also regions for example around 4.5 G0 (after about 1.8 nm) or
10.5 G0 (between geometry 3 and 4) which show loops. They arise because of increasing

2As already discussed the displacement is not uniquely defined in experiments.
3Below 1 G0 starts somewhere the tunneling regime.
4Elongation of bonds.
5Reorganization of atoms/breaking of bonds.
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Figure 8.4.: Geometries of an example of an elongation along the 〈110〉 direction (top) and the
corresponding conductance and force curve as function of the displacement (lower part).
The positions of the geometries are marked in the lower row by gray bars.

conductance values as function of displacement during elastic or plastic deformations. That
is what can be seen at about 1 G0 and 1.5 G0 in the 〈100〉 and at about 1.5 G0 in the 〈110〉
direction.
The conductance histograms show further differences between the elongation directions.
While in the 〈100〉 direction a peak every about 0.8 G0 is visible, it is only about every
second of them in the 〈110〉 and 〈111〉 direction. In experiments (Fig. 8.1) the peaks are
separated by about 1.0−1.2 G0. The positions depend on the kind of samples used (thin-film
break junctions as used by the group of Elke Scheer contain more disorder and other defects
which leads to a broadening of the peaks and a shift to lower values [10]).
The mean channel distributions show a fast saturation of the first channel in the 〈100〉
direction and a slow one in the 〈111〉 direction. The 〈110〉 direction is in between. This is
reflected in the suppression of the Fano factor at 1 G0 which is prominent in the 〈100〉 but
not in the other two directions. It still plays a role at higher conductance values leading
to different fitting results of the horizontal line to the Fano factor values. The result are
0.23± 0.04 (〈100〉), 0.27± 0.02 (〈110〉) and 0.27± 0.03 (〈111〉).
The experimentally observed slow opening of the first channel and the relative high Fano
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Figure 8.5.: Density of force (upper row) and its mean 〈K〉 with standard deviation σK (lower row)
as function of the total conductance. The densities are normalized to an upper limit of
9.
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Figure 8.6.: Force vs conductance with the same data as in Fig. 8.4. The data points are ordered
according to their appearance during the elongation process.

values without large suppression at 1 G0 (Fig. 8.1) fit best to the 〈111〉 direction.
This is shown in more detail in the channel analysis at 1 G0 in Figs. 8.1 (experiment) and
8.8 (theory). With finite contributions from half open channels and almost no fully open
ones the 〈111〉 direction, different to the other two, fits very well to the results from sample
B. In contrast, with a small range of almost closed channels and a broad one of highly up
to fully open channels, the 〈100〉 fits best to the A’ sample. The results are consistent with
the calculations from Cuevas et al. [10] where an idealized one atom contact in the 〈111〉
direction was assumed6.
The mean thermopower also differs between the three directions: while it is strictly negative
or zero in the 〈100〉 direction, it is about zero with a slight tendency at low conductance
values toward negative values in the 〈111〉 direction and it fluctuates around zero in the
〈110〉 direction. In all cases σS is much larger than the mean value itself.
This behavior can be explained by looking at the energy dependent DOS and transmission

6Some statistics was introduced by introducing random fluctuations of the atomic coordinates.
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Figure 8.7.: Conductance histograms (first row), mean channel distributions with standard devia-
tions (second row) and density plots of the Fano factor (third row), thermopower (fourth
row) and the ratio of κel to G0L0TK0 (fifth row) for Al at 0.25 K (4 K for the ther-
mopower data) with about 300 atoms (288 for <100> (first column), 316 for <110>
(second column), 301 for <111> (third column)) in the central wire each as function of
the total conductance. The histograms are normalized to an upper limit of 10 and the
densities to an upper limit of 9. The standard deviation of the Fano factor (σF ) in the
insets is shifted upwards by 0.1.

calculations (Fig. 8.9). While the s orbitals in the dimer examples show a negative energy
dependence near the Fermi energy, the p orbitals show a more complex behavior, compen-
sating each other partially. This leads to a complex energy dependence of the transmission
curves. The relative smooth one in the 〈100〉 direction compared to the other two and its
clear positive tendency explains the slightly negative thermopower with the relative small
spread of this direction.

The Wiedemann-Franz law (last row in Fig. 8.7) is in all three directions fulfilled.
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Figure 8.8.: Channel transmission histograms at 1 ± 0.125 G0 of the three elongation directions
together with a fit of the bimodal distribution. The bar at 0 is almost zero because
only channels > 0 are included (0 < τi < 0.025).

Figure 8.9.: DOS and total transmission calculations as function of the energy for the dimers shown
on the right. The top geometry on the right side is from the 〈100〉, the middle from
the 〈110〉 and the bottom geometry is from the 〈111〉 direction. The arrows mark the
positions of the atoms where the DOS is calculated from.

Figure 8.10.: Results of the total data set including all three directions: The conductance histogram
(left), the mean channel distribution (middle) and the Fano factor (right) with mean
value (red) and standard deviation (green) in the inset. σF is shifted upwards by 0.15.
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Up to now the electronic properties of the individual directions were discussed but one could
argue that in experiments one could have a mixture out of all three directions. One big
problem of this argumentation is how one should weight the different directions. In Fig.
8.10 the results for the total of all three directions is presented. That corresponds to an
equal weighting of the directions. As the features are very similar in all three directions, it
is not astonishing to find them again. But the small differences in the directions also has a
blurring effect. So are the peaks in the conductance histograms broader and less pronounced
than in the 〈100〉 and 〈111〉 direction but at about the same position. Because of the rel-
ative large conductance peak at 1 G0 in the 〈100〉 compared to the other two directions, it
dominates the behavior of the mean channel distribution and the Fano factor at around 1 G0.

8.1.1. Conditional MCS and conductance histograms

Figure 8.11.: The minimal cross section (MCS) as function of the total conductance (first row),
the conductance histogram (second row) and the MCS histogram (third row). The
conductance histogram is colored according to the contributions to the corresponding
regions in the MCS histogram with the same color.

Besides this purely electronic properties, with Sharvins formula one can connect the total
conductance with the minimal cross section (MCS) of a wire, thus a geometric property.
This is done in Fig. 8.11 where the connection of both is shown. The colored regions are
defined in the MCS histogram and the colored regions in the conductance histogram show the
correlated regions. There they are not such well defined because the mapping is not perfect7.

7This was already discussed in section 6.1.
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The red areas (second from left) for example have by definition sharp flanks to the left of 1
in the MCS histograms while the correlated first peaks in the conductance histograms are
more Gaussian. The same is true for the other peaks. In this partitioning of the areas the
left ones (purple) represent the tunneling regime, the second ones (red) the atomic contacts
with a single atom in the narrowest part (monomer, dimer, ...) and the higher ones (green,
blue, yellow) are designed to best fit to the peaks in the conductance histogram of the 〈100〉
direction.
The tunneling regime (purple area) is an interesting part because it is differently populated
in the three directions. The 〈100〉 direction shows as in the MCS histogram a relative sharp
left flank at below 1 G0 followed by an increasing number of points going to zero. The
〈111〉 direction shows a similar behavior but with a larger width of the first peak down to
about 0.5 G0 and less data points in the MCS histogram below 1. The 〈110〉 direction has in
contrast to the 〈100〉 direction a very broad peak around 1 G0 and no data points in the MCS
below 1 and therefore no points in the tunneling regime. This means that atomic contacts
with a single atom in the narrowest part are always well conducting in the 〈100〉 direction
while the conduction can be reduced with large probability in the 〈110〉 and 〈111〉 direction.
The reason for the lack of data points in the tunneling regime in the 〈110〉 direction is the
geometric phase (see Fig. 8.4) under tension which leads to a very fast displacement after
the breaking of the last bond8.

Figure 8.12.: An example for a geometry contributing to the conductance peak in the 〈100〉 direction
at 1.1 G0 (left) and at 1.5 G0 (right). The channel distributions are: 0.82, 0.15, 0.13
(left) and 0.77, 0.55, 0.20 (right).

A third point is the missing feature in the MCS histogram near below 2. This means that the
second peak in the conductance histograms of the 〈100〉 and 〈111〉 direction are not based
upon special minimal cross sections.
Looking at the geometries one finds that mainly dimers contribute to the peak at 1.1 G0 and
mainly monomers to the one at 1.6 G0. Examples are shown in Fig. 8.12. As both cases have
only one atom in the bottleneck they can not be separated by simple geometrical means like
the MCS. Both cases have three contributing channels as expected from the orbital structure,
but while the dimer has one main channel and two minor ones, the monomer has two well
contributing channels and one which is only minor.

8The geometric phase without tension is shorter than the corresponding one with tension and the transition
is very fast.
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8.1.2. Rising plateaus
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Figure 8.13.: Elongation curves with rising conductance plateaus. One example with three geome-
tries per elongation direction (top) and the corresponding conductance (red), force
(green) and channel distribution (dotted) curves (bottom). The resolution of the force
in x-direction is five times as high as the one of the conductance. The vertical dashed
lines in the graphs mark the positions of the geometries above.
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Figure 8.14.: DOS for the central atom of the three geometries of the 〈100〉 example in Fig. 8.13.

There is an interesting behavior of Al plateaus which was already mentioned in connection
with Fig. 8.4 and is well known in experiments (see e.g. [191], [39]) but not that much from
other materials9. Krans et al. already suggested that this could be due to an optimization
of the overlap during the elongation. To analyze this Fig. 8.13 shows one example for each
elongation direction. A first interesting remark regarding the geometries is that the leads
of the 〈100〉 examples show a much larger opening angle than the other two directions.

9In the paper from Krans et al. [191] they also present Pt measurements which show this behavior.
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During the conductance plateaus the force can show several jumps meaning that the wire
has geometric reorganizations in the vicinity of the single atom contact (between first and
second geometry in the 〈110〉 example), as well as farther away (between the geometries in
the 〈111〉 and between the second and third geometry in the 〈110〉 example). The channel
distribution is not perfectly comparable, but they have in common that some channels rise
while others decrease, so not all are rising.
This can be analyzed deeper by looking at the DOS evolution of an example. In Fig. 8.14
the DOS of the three geometries of the 〈100〉 example are shown. This example shows first a
decrease in the conductance due to the increasing distance between the two leads (geometry
one and two). In the DOS this is accompanied or caused by a decrease in the density of the s
orbital. The p orbitals slightly change their energy dependence and while the pz orbital gains
density, the two perpendicular orbitals slightly loose some. In the following increase of the
conductance gain all p orbitals density, but most the pz one. This means that the p orbitals
get optimized overlaps due to geometric modifications. At the same time the s orbital still
looses density which is compatible with a further elongation of the bonds between the atoms.
In total this analysis supplies the theory from Kran et al. that the rising plateaus have their
origin in the optimization of orbitals during the elongation process. To finish this part Fig.
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Figure 8.15.: Fano factor (red) and thermopower (green) of the curves shown in Fig. 8.13. The
dotted horizontal line in the middle of the plots is a guide for the eye at 0µV/K. For
better comparison with the figures before the force is added in gray (in arb. units).

8.15 presents the according data of the Fano factor and the thermopower. As the Fano factor
and the thermopower are derived values from the channel distribution and energy dependent
transmission it is not surprising that they respond to all modifications in the geometry10.
They are even more sensitive than the total conductance shown in Fig. 8.13. But both
properties act like in the mean, while they behave relative smooth with a mainly negative
thermopower in the 〈100〉 direction, they behave more extreme to the geometric modifications
in the 〈110〉 elongation direction and the 〈111〉 direction is somewhere in between.

10Jumps in the force.
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8.2. Single-atom memory
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Figure 8.16.: Three experimentally realized bistable switches as function of real time. The black
line shows the evolution of the conductance measurement and the filled circles are the
channel distributions as numerically determined from the superconducting IV curves.
The dotted lines between the circles are only guides for the eyes. The data sets are
the same as for Fig. 3 of [14] (left one) and Figs. 7a and 7b from the corresponding
supplementary information (central and right).

In the electromigration experiments of Christian Schirm et al. [14]11 a procedure could be
established with which a wire could be switched between two different states with different
conductance properties (Fig. 8.16). The procedure used an MCBJ at cryogenic conditions
between 250 mK and 1.5 K in a vacuum chamber to thin a wire down to a conductance of a
few G0. Afterwards current in the order of dozens of µA and hundreds of mV was used to
modify the geometry further. After some cycles where the current direction and amplitude
was changed automatically according to jumps in the conductance, eventually a bistable
situation was achieved12. The wires could be switched hundreds of times by reversing the
current direction.
With the help of superconducting leads it was also possible to determine the channel distri-
bution13. As the channels are more sensitive to geometric configurations, which was shown
in the last section, they can be used to select more precisely the possible geometries for the
measured plateaus from the calculated set of elongation curves.
Fig. 8.16 shows prominent examples from the experiments. The effect of the switching onto
the channels is very different in the three examples. While in the left example the switching
is dominantly effected by the second (blue) channel, in the middle example at least three
channels are significantly affected and the number of contributing channels changes from
four in the high conductance state to three in the low one. The third example also shows a
change in the number of channels, but that time the high one has one channel less than the
low one.
14

With the additional requirement for the selected geometries that they have to be from the
same elongation curve such that it is possible to switch between both states, table 8.1 shows
11Cooperation paper, parts of our theoretical results shown below are also published there.
12They were only called bistable if the wire was stable even without current. Tests achieved up to 10 h.
13Multiple Andreev reflection (MAR), for more information see sec. 4.1 and the supplementary information

of [14].
14The dashes in the line are equally spaced so the length can be estimated by counting the number of dashes

(after zooming in).
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target
values

1.84 G0: 0.86, 0.75, 0.20

1.12 G0: 0.77, 0.24, 0.07

2.26 G0: 0.89, 0.84, 0.26, 0.24

0.95 G0: 0.61, 0.20, 0.12

0.92 G0: 0.78, 0.12

0.61 G0: 0.39, 0.12, 0.10

〈1
00
〉

sample
values

1.82 G0: 0.89, 0.72, 0.21

1.12 G0: 0.79, 0.22, 0.10

2.27 G0: 0.97, 0.67, 0.43, 0.20

0.99 G0: 0.71, 0.17, 0.11

0.86 G0: 0.58, 0.22, 0.06

0.69 G0: 0.55, 0.10, 0.03

〈1
10
〉

sample
values

1.83 G0:
0.94, 0.71, 0.17, 0.01

1.11 G0: 0.80, 0.26, 0.05

2.25 G0: 1.00, 0.82, 0.27, 0.15

0.94 G0: 0.83, 0.08, 0.03

0.95 G0: 0.77, 0.16, 0.03

0.59 G0: 0.45, 0.11, 0.02

〈1
11
〉

1
1

2
2

3
3

sample
values

1.83 G0: 0.99, 0.69, 0.14

1.11 G0: 0.86, 0.16, 0.09

2.28 G0: 0.98, 0.73, 0.27, 0.25,
0.04

0.91 G0: 0.62, 0.20, 0.09

0.94 G0: 0.73, 0.15, 0.05

0.62 G0: 0.52, 0.07, 0.03

Table 8.1.: Best matching geometries from each elongation direction for three experimentally promi-
nent jumps (target values). The cyan bars mark bonds which have to be broken going
from the left to the right geometry. Interesting bonds are dotted14 and some atoms are
numbered to better find them on both geometries. The dotted line in the left geometry
of the second row and second column is special because it gets connected going from left
to right.

the best matching geometries from each elongation direction. The resulting geometries show
two interesting similarities: The plateaus around 1 G0 are all from dimers while the plateaus
at about 1.8 G0 are from monomers. The three geometries of the second example at about
2.3 G0 show also very similar central regions. This result is not unexpected as the neck-hole
should dominate roughly the behavior of the contact.

Fig. 8.17 shows the transmission and force data of the 〈111〉 examples as function of the
displacement for a longer range (some geometries during the complete elongation process
can be found in table 8.2). It can be nicely seen that the two geometries of the first and
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Figure 8.17.: Conductance (red), force (green) and channel transmission as function of the displace-
ment for the 〈111〉 examples in table 8.1.

second example are separated by one atomic reorganization15 concerning two bonds (cyan
bars in table 8.1). The last example does not contain atomic reorganizations. The two
geometries are on the same force and conductance plateau. The main differences between
the two geometries are the angle between the two atoms in the neck-hole labeled with ’1‘
and ’2‘ and the length of the bond connecting both changing from 2.9Å to 3.1Å (marked
by a cyan dashed line14 ).
The observations made for this 〈111〉 examples are true also for the other two directions,
except the first example of the 〈100〉 direction where six bonds have to be broken during the
reorganization of atoms 1 to 3.

In total, with this comparison it could be shown that the switching between the bistable
states realized in the experiments from Schirm et al. can be traced back to the reorganization
of one up to a few atoms and includes the breaking or forming of only a few bonds.
The experimental and theoretical results were published together in [14].

sample 1 sample 2 sample 3

〈1
00
〉

〈1
10
〉

〈1
11
〉

Table 8.2.: Snapshots of the elongation process of the geometries in table 8.1.

15Jump in the force.



9. Additional studies

In the sections till now the properties of different metals was studied at a given temperature,
thermostat, elongation speed, statistics, lattice type, system size and starting geometry. But
how large is the influence of those fixed parameters and how do they influence the results?
This questions will be addressed in the next sections.

9.1. NVT versus NVE ensemble

The thermodynamic ensemble in which the atoms of the geometries are evolved in time plays
an important role. The reason for this is that the elongation process puts a lot of energy into
the system, first of all into the potential energy. But with each rupture process energy flows
from the potential energy into the kinetic one leading to an effective heating of the wire.

Figure 9.1.: Force and temperature curves for an Fe wire within an NVT ensemble (Nosé-Hoover)
at 300 K (first row) and at 4 K (second row) and within an NVE ensemble started at
4 K (third row).

This can be seen in the examples of Fig. 9.1: Each rupture process (green) leads to a sudden
increase in the temperature (red). Now having an NVE ensemble where the energy is kept
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fix1 (bottom row) the temperature develops step-wise leading to a very high temperature at
the end of the elongation process. Using an NVT ensemble instead, the thermostat tries to
keep the temperature fixed. Depending on the thermostat this is not done instantaneously2,
but with a damping constant or even more enhanced damping mechanism like in the Nosé-
Hoover thermostat (see section 2.1.2). The damping leads to an exponential decay of the
actual temperature toward the target temperature.

Figure 9.2.: Density plots of the MCS data of 100 elongation curves as function of the displacement
of their upper walls to the initial positions for Fe in an NVT ensemble (4 K, left) and
an NVE ensemble (starting at 4 K, right). The densities are normalized to an upper
limit of 9. The insets show the corresponding mcs-histograms normalized to an upper
limit of 1.

The difference can also be seen in the mcs evolution (Fig. 9.2) and the mcs histogram (insets).
While the density plot of the NVT curves shows the usual spread at the end of the elongation
process, because of the high temperature the curves in the NVE ensemble behave more fluid
like. In this context this means that they behave in the mean more well defined with much
less deviations. As a consequence the droplet like behavior which is in the NVT ensemble
only visible in the first parts of the elongation process shows up in the NVE ensemble till
the end.

 10

 15
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 0.6  0.8  1

M
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Figure 9.3.: Geometries of an elongation curve before (left) and after (middle) a jump in the MCS
curve (right). The gray vertical bars in the MCS graph mark the positions of the two
geometries.

1The energy included by the elongation process is not considered.
2A rescale thermostat could do that, but that would be unphysical.
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The reason for this is depicted by an example in Fig. 9.3. Shown is the geometry shortly
before and after a jump in the MCS which is equivalent with the jump from one droplet to
the next. Before the jump the geometry has eight rows, afterwards it has nine meaning that
this droplets just define sections with the same number of rows. The reason why this well
defined droplets get lost in the (low temperature) NVT ensemble is the more brittle behavior
of the structures leading to more arbitrariness in the breaking process3. The regular peaks
in the MCS histogram of the NVE ensemble (insets of Fig. 9.2) are just a reflection of this
droplets.

Figure 9.4.: Geometries along an elongation process in the NVT ensemble (top) and in the NVE
ensemble (bottom).

An example for the evolution of the geometries during the elongation process is shown in
Fig. 9.4. Here one can recognize the points already discussed: The relatively well defined
lattice of the NVT example which allows the evolution of a short, view atoms thick wire,
leads to a wide spread of possibilities in the histograms. In contrast, the NVE ensemble has
due to its relative high temperature4 a smooth surface. The high mobility of the atoms does
not allow the creation of a small, few atoms thick wire as in the NVT example but it leads
to a straight forward breaking.

This were the effects of the used thermodynamic ensemble onto the geometric properties.
Fig. 9.5 shows the effects onto the transmission values. Here the effects are very similar.
The total conductance, coupled via Sharvins formula to the MCS, follows the same trends
as function of the displacement (straight in the NVE and with a large spread in the NVT
ensemble). The mean values of the other properties behave also quite the same comparing the
two thermodynamic ensembles but the spread is much larger in the NVT results compared
to the NVE results.
With 16 times less data points as in the mcs histogram the resolution of the conductance
histograms are not very good. An interesting point is that the fast breaking due to the
high temperature in the NVE ensemble leads to a shift of the first peak to slightly higher
values (1.3 G0 vs. 1.7 G0) and that there are almost no points below. As the first peak in
the experimental Fe histograms were at about 2.1 G0, this result could mean that the Fe
atoms in the constriction are in the experiments much more mobile than in the theory. A

3E.g. breaking in sidearms or building of wires.
4Though it also started at 4 K.
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Figure 9.5.: Conductance density plots as function of the displacement (first row), conductance
histograms (second row), mean channel distribution (third row), Fano factor (fourth
row) and thermopower (sixth row) as function of the total conductance for 50 curves
in the NVT (left) and 50 curves in the NVE ensemble (right). Both use an FCC start
geometry. For the thermopower a fictive temperature of 4 K was used. The densities
are normalized to an upper limit of 9.

reason could lie in a too rigid pseudo potential at low coordination numbers (surface). Local
heating could be another point adding to the problem.
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9.2. Temperature evolution and concept of opening and
closing curves

Up to now the results at low temperatures (around 4 K) and at room temperatures (300 K)
were discussed. But what happens in between? Is there a continuous transition as one would
classically expect? In the following this question will be addressed using small Au wires (56
atoms in the central region).

Figure 9.6.: Conductance histograms (first row), mean channel distributions with standard devia-
tions (second row) and density plots of the Fano factor for Au at temperatures between
4 K and 300 K from data of 200 elongation (opening) curves with 56 atoms in the
central wire each as function of the total conductance. The histograms are normalized
to an upper limit of 10 and the densities to an upper limit of 9.

The statistical results for four different temperatures from 4 K to 300 K (Fig. 9.6) show as
expected a continuous transition. Because of the size of the contacts the results are not
completely identical to the ones already presented 5.
The conductance histograms (first row) show with increasing temperature a decrease of the
first peak at 1 G0 and an increase of the second one at about 2 G0. To explain this Fig.
9.7 and 9.8 show examples at 4 G0 and 300 G0, respectively. While at low temperatures the

5This point will be addressed later.
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Figure 9.7.: Example for the evolution of a Au geometry at 4 K exhibiting a long plateau around
1 G0 by creating a mono-atomic wire (left) and the corresponding conductance (black
line) and channel distribution (colored dotted lines) (right). The vertical gray lines
mark the positions of the geometries from the left side.
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Figure 9.8.: Examples for the evolution of Au geometries at 300 K exhibiting a long plateau around
1 G0 (first geometry) and 2 G0 (second to fourth geometry). The corresponding con-
ductances (black line) and channel distributions (colored dotted lines) are shown on
the right. Here the upper graph shows the evolution of the curve belonging to the first
geometry and the lower one belongs to the other three geometries. The vertical gray
lines mark the positions of the geometries from the left side.

wire diameter decays relatively fast to a single atom which forms in the continuing elon-
gation a long wire with roughly 1 G0, the wires are more flexible at higher temperatures,
forming long, few atoms thick wires which break relative sudden. But there are still some
configurations at room temperature forming short single atom wires like the first example in
Fig. 9.8. This trend was already discussed in earlier sections but here it can be seen very clear.

The channel distributions (second row of Fig. 9.6) show a similar evolution. While in the
mean they behave almost identical, the standard deviation above 1 G0 increases with increas-
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ing temperature. This is especially visible in the first channel where between 1 and 2 G0 the
increasing deviation leads to a decrease in the mean value. That has its representation in
the Fano factor (third row) which shows it as increase in the spread within this range. The
modifications of the counts (color) in the Fano factor plots are due to the modified conduc-
tance histograms.

9.2.1. Closing curves

Fig. 9.6 shows the results of the so called ‘opening traces’. But in experiments the samples
are opened (elongated) and closed (compressed) in a cyclic manner, resulting in a data set
of the opening and one of the closing curves6.

Figure 9.9.: Conductance histograms (first row), mean channel distributions with standard devia-
tions (second row) and density plots of the Fano factor for Au at temperatures between
4 K and 300 K from data of 200 closing curves with 56 atoms in the central wire each
as function of the total conductance. The histograms are normalized to an upper limit
of 10 and the densities to an upper limit of 9.

In Fig. 9.9 the corresponding results of closing curves are shown. Therefor the elongated
wires used for Fig. 9.6 were closed again. Comparing the two figures one sees that the

6For example in the dissertation of S.Olivier [192] or for Au and Zn in [193].
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main differences between the temperatures pointed out above have vanished. The first peak
in the conductance histogram is still there but with much less intensity compared to the
background7. This is at 4 K about 4 times less than in the opening histogram and at 300 K
about 2 times less. The second peak has in all four cases about 80 % of the height of the first
one which is in total contrast to the opening curves. At 4 K the almost fully open mean first
channel at 1 G0 is missing as are the drop of the mean first channel at higher temperatures
above 1 G0. The latter point results in the loss of the shoulder in the Fano factor plots near
above 1 G0 at higher temperatures.
What can not be directly seen in this representation is that the total height of the first peak
at 4 K is about 2.6 times as high as at 300 K, for the opening curves the factor was about 4.5.

To get a feeling of what happens to cause all this adaptions between the temperatures Fig.
9.10 shows examples of different possibilities of what could happen at 4 K.
The first example shows a dimer forming in the elongation process. The upper part gets in
the elongation process elongated in such a way that the dimer does not survive for long, but
the orientation of the dips stays stable even after the breaking (geometry two and three).
The reconnection is slow due to the well relaxed configuration of the two separated parts
leading to relative long plateaus at 1 and 2 G0 and a relatively good represented tunneling
regime. The geometry of the 1 G0 plateau (fourth geometry) is again a dimer. The final
geometry (geometry five at 10 ns) has no well defined crystal structure as the beginning one
which leads to an effective decrease in conductance.
The second example has very similar features as the first one but creating a monomer instead
of a dimer. The decrease of the conductance plateaus with time after reconnection is due
to the fact that the atoms push each other away from the ideal positions with decreasing
distance of the walls. During a plateau this dislocations are not far enough to create a
geometric reorganization which would lead to steps in the conductance.
The remaining two examples are different. Both configurations form long chains in the elon-
gation process which rip at one end and agglomerate to one side. The difference between
those two is how the resulting dips look like, are they more cone like as in example three or
more flat as in example four. If they develop cone like dips than the conductance curve can
develop steps as in the examples one and two. But if they are flat than no plateaus will be
visible.

In total, the closing curves have similar properties as the opening curves but because of the
different characteristics of slightly stretched or compressed lattices, they are not identical.
Further more, the relaxation processes after the rupture lead to results which have more
similarities with high temperatures as with low ones and to a reduction of data points in the
low conductance regime.

7The values between the peaks.
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Figure 9.10.: Four examples of the opening and closing of contacts at 4 K. The geometries on the
left belong to the conductance and channel distribution plots on their right with gray
vertical lines marking their positions. The line ‘D’ shows the displacement of the walls
according to their original (ideal) positions (right y-axes).
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9.2.2. Closing curves of Mg, Al and Ag

Equivalent to the proceeding in the last section, the closing of the contacts of the large
geometries of Mg, Al and Ag at 4 K which were analyzed above (sections 5.1-5.5) were
calculated.

Figure 9.11.: Statistics of 100 closing curves of Mg, Al and Ag at 4 K. Density plots of the total
conductance as function of the displacement of their upper walls to the initial positions
(first row), conductance histograms (second row, Mg only 50 % of total height), mean
channel distributions with standard deviations (third row) and density plots of the
Fano factor (fourth row), thermopower (fifth row) and the ratio of κel to G0L0TK0

(sixth row) as function of the total conductance. The histograms are normalized to
an upper limit of 10 and the densities to an upper limit of 9.
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The statistical results of this closing curves are presented in Fig. 9.11. The mean values are
again within some error the same as before in the statistics of the opening curves. That is
also true for the positions of the peaks in the conductance histograms, but not exactly for
their width and relative heights. The Mg peaks are more sharp here than in the opening
curves, so are the first peak in the Al histogram at about 1.1 G0 and the third one in Ag at
about 2.9 G0.

Figure 9.12.: Examples for geometries of Mg contacts with at least four points at the first peak
with 1 ± 0.1 G0 (first and second) and the second one with 2 ± 0.1 G0 (third). The
conductances and highest channels are: 1.00 G0: τ1 = 1.00 (first), 1.01 G0: τ1 = 0.99,
τ2 = 0.02 (second) and 1.98 G0: τ1 = 0.97, τ2 = 0.52, τ3 = 0.40, τ4 = 0.09, τ5 = 0.01
(third).

The first peak of all three metals consists mainly of dimers and some monomers as shown
in Figs. 9.12 and 9.15 for Mg and Ag. The second peak in Mg is slightly more interesting.
It consists mainly of geometries with two parallel atoms which lie in their fcc positions8 as
shown on the right of Fig. 9.12.

Figure 9.13.: Geometries of a Mg curve with three parallel wires arising during the opening (left)
and two during the closing process (right). The second geometry shows the broken
contact in-between. The left geometry has a conductance of 3.1 G0. The five highest
channels are τ1 = 1.00, τ2 = 0.98, τ3 = 0.85, τ4 = 0.23 and τ5 = 0.03. The right
geometry has a conductance of 2.1 G0. The three highest channels are τ1 = 0.99,
τ2 = 0.96, τ3 = 0.07.

But one additional geometry was found: Two parallel dimers as known from opening curves
of Au (right geometry in Fig. 9.13). The left geometry in Fig. 9.13 shows the corresponding
opening curve slightly before rupture. It includes three parallel wires. As Mg does not form
chains9 the wires end up in monomers and dimers. In this case the monomer in the middle
and the dimer on the right survive in a similar shape the rupture process and reunite into a

8Therefore it looks like a parallelogram.
9At least it was never observed here.



134 9.2. TEMPERATURE EVOLUTION, OPENING AND CLOSING CURVES

similar configuration while the upper atom of the dimer on the left moves upwards (second
geometry), prohibiting a reunification into a dimer.

Figure 9.14.: Geometries of Mg of different types of parallel wires. The actual conductance values
are 2.9 G0 (upper left), 4.7 G0 (upper right), 6.7 G0 (lower left) and 14.7 G0 (lower
right).

Looking back onto the other opening curves shows that parallel wires ending up in parallel
monomers and dimers is very seldom. It was only found a second time in the set of 100 curves
(upper left geometry in Fig. 9.14). But the case of parallel wires with different minimal cross
sections can be found in 7 % of the curves (second to fourth geometry in Fig. 9.14). The
geometries in the second row show another interesting possibility of parallel wires. Here they
are distributed in a circular manner. So the cores are hollowed out while the borders are
still in touch. This could be a finite size effect. An according study could shed more light
onto this whole point of parallel wires in Mg contacts.
Annotation: It was mentioned above that in experiments there were hints of quantization in
Mg. The existence of parallel dimers could be a solution to that.

Figure 9.15.: Examples for geometries of Ag contacts with at least five points at the first peak with
1±0.1 G0 (first and second) and at least four points at the third one with 2.9±0.1 G0

(third and fourth). The conductances and highest channels are: 0.99 G0: τ1 = 0.92,
τ2 = 0.07 (first), 0.96 G0: τ1 = 0.95, τ2 = 0.08 (second), 2.91 G0: τ1 = 1.00, τ2 = 0.94,
τ3 = 0.88, τ4 = 0.05 (third) and 2.88 G0: τ1 = 0.99, τ2 = 0.96, τ3 = 0.70, τ4 = 0.19,
τ5 = 0.04 (fourth).
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In the statistics of Ag the first and third peak in the conductance histogram are specially
pronounced, the third one even more than in the opening curves. The first one consists as
already mentioned out of monomers and dimers (left half of Fig. 9.15) and the third one
out of geometries with four atoms in the minimal cross section (right half of Fig. 9.15). Ag
maintains a much higher symmetry than Mg. That is visible in all four examples. But the
first example of the 2.9 G0 example has a symmetry break in the connection between the
two halves which is relatively stable and leads to a reduction of the conductance10. This is
different in the second example where the distance between the rows of atoms are different in
comparison to one another which leads to a reduction of the conductance. This difference is
not visible in the geometry but in the channel distribution which shows two fully open ones
and two reduced ones. It is also per definition not stable because the distance is reduced
continuously due to the reduction of the distance between the walls.

In total, the statistical results are very similar to their opening counterparts. The differences
are smaller than what was shown for the small Au contacts in the last section.

In the following, if not explicitly written different, than only opening curves will be shown
as before.

10Usually it should be 4 G0 with 4 atoms in the MCS.
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9.3. Influence of velocity

Different to the temperature which can be set arbitrarily within the simulations, the velocity
of the walls moving away from their original position has numerical limits. This limit comes
due to the problem that in MD calculations one can not parallelize the time11 and the
parallelization in particles has an upper limit12 and a decrease of the velocity of an order of
magnitude leads to an increase in elongation time of about the same order.

Figure 9.16.: Au data sets of wires with 56 atoms in the central part at 4 K (left half) and at 300 K
(right half) at two different velocities of the walls (0.4 m/s and 8 m/s). The sets with
0.4 m/s contain 200 curves each and the sets with 8 m/s contain 1000 curves each. The
MCS in the last row is determined by the simple projection method.

A wire with 563 atoms in the central wire needs with a velocity of 0.4 m/s about 1.5 h on
20 cores for the calculation of the elongation process. In experiments velocities in the order
11Because of causality.
12If one has the same number of cores as particles, which is the upper limit of cores one could imagine

to be possible useful, the cores would have to waste a huge amount of time transferring data to one
another. Data transfer between cores is very slow, in some cases even slower as if the addressed core
would calculate the data itself.
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of 0.1µm/s are used [194] which are six orders of magnitude lower than what was used for
the calculations of this work. This difference in timescale can not be bridged from theory side.

So, are this calculations only of academic interest and have nothing to do with reality? The
very good agreement between theory and experiments shown in earlier sections does not
support this point of view. The reason for this lies in the very high speed of sound in metals
which is in the order of km/s [195]. This is the upper limit of the movement of atoms and
accordingly the timescale in which (small) geometric reorganizations can take place. The
argumentation is that as long as the velocity stays far below this limit, the velocity should
play no important role. With three orders of magnitude this should be fulfilled.
To analyze this problem in a more quantitative manner Fig. 9.16 presents the results for
two different velocities with more than one order of magnitude difference for low and room
temperature. As the chosen wires are again very small only the conductance range below
about 4 G0 is meaningful, which means in main the first and second peak.
At low temperatures all properties look within some error perfectly the same. At room
temperature this is the case except for the peak heights in the conductance histogram and
due to this the histograms in the Fano factor and MCS density plots. The peak positions
stay the same. The reason is that the higher speed reduces the time for relaxation processes.
But at higher temperatures this is what destabilizes thin wires where the one atomic wire is
the extreme case, leading to the large decrease of the first peak compared to the other ones.
So the effect on the histogram is the same as if reducing the temperature.

In total, within the accessible range of velocities the mean values are velocity independent,
but at higher temperatures the velocity has a non negligible effect on the relative peak
heights.
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9.4. Statistical evolution

If one has chosen all the parameters needed for the elongation of a contact (e.g. the size,
temperature, elongation direction, speed) the question remains how much elongation curves
one needs to get sufficient converged histograms. To get a feeling for this Figs. 9.17 and
9.18 show the evolution of the typical properties studied here with the number of elongation
curves for 4 K and 300 K, respectively.

Figure 9.17.: Conductance histograms (first row), mean channel distributions with standard devia-
tions (second row) and density plots of the Fano factor for Au with 56 atoms in the
central wire and an elongation speed of 8 m/s at 4K with statistics ranging from data
of 10 elongation curves (first column) up to 104 elongation curves (fourth column) as
function of the total conductance. The thermopower in row four has data from up to
103 elongation curves. The histograms are normalized to an upper limit of 10 and the
densities to an upper limit of 9.

As can be seen, already 10 curves are sufficient to get a noisy but correct representation of
the distinctive features. In the conductance histogram (first row) the first and second peak
are developed. With 100 curves the histograms are almost perfectly converged. The mean
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Figure 9.18.: Conductance histograms (first row), mean channel distributions with standard devia-
tions (second row) and density plots of the Fano factor for Au with 56 atoms in the
central wire and an elongation speed of 8 m/s at 300K with statistics ranging from
data of 10 elongation curves (first column) up to 104 elongation curves (fourth column)
as function of the total conductance. The histograms are normalized to an upper limit
of 10 and the densities to an upper limit of 9.

channel distribution behaves similar. With 10 curves the rough behavior of the individual
channels can be overseen. With 100 curves the mean values have converged. The density
plots also behave similar. 10 curves are sufficient to oversee the mean behavior, with 100
curves the configuration space is already roughly sampled. A higher number of elongation
curves only samples the configurational space more dense and smooths thereby the resulting
histograms.
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9.5. FCC versus BCC Fe lattice

BCC FCC

Figure 9.19.: Ideal starting geometries for the bcc (left) and fcc (right) data sets of Fe shown in Fig.
9.20 (top) and one example for each lattice type for a geometry with 1.5 G0 (bottom).

Another property which was briefly mentioned in the context of the Fe results above is the
crystal structure. All materials which were investigated here except Fe have an fcc lattice.
For Fe the bcc configuration13 is energetically preferred14 so it was used for the construction
of the ideal starting geometries. Fig. 9.19 shows the two lattice types.
The lattice type of the initial ideal structure is not expected to play an important role because
if the wire is large enough and already elongated to some extend, the electric properties
should be dominated by the thinnest part of the wire which has enough disorder to forget
about its initial lattice structure. An example for this explanation is given in the bottom
line of Fig. 9.19 where both geometries shown, the left one coming from a bcc and the right
one from an fcc wire, have 1.5 G0.
To check this assumption in the statistics with respect to the different properties, Fig. 9.20
shows the direct comparison between the two lattice types.
Two main differences can be seen: The delayed decay as function of the displacement and
the larger spread in all plots of the fcc configuration compared to the bcc one. The first
one is due to the larger number of atoms (about twice as many). The second one is more
unclear. The larger number of atoms leads to longer structures which have more possibilities
to decay. This leads to more noise and probably also to configurations which are not possible
in the relative short bcc wires.
The mean values show within the error bars a perfect agreement.

In total, the lattice type seems not to have a large impact onto the results. It only modifies
some details.

13 [196] references to ‘R. Kohlhaas, P. Donner, and N. Schmitz-Pranghe, Z. Angew. Phys., 1967, 23, 245 ’
14Mg has usually also no fcc structure, but hcp is currently not implemented.
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Figure 9.20.: Density plots of the conductance as function of the displacement (first row), conduc-
tance histograms (second row), mean channel distributions with standard deviations
(third row) and density plots of the Fano factor (fourth row), the thermopower (fifth
row) and the ratio of κel to G0L0TK0 (sixth row) for Fe at 4 K with data of 100 elon-
gation curves with 275 atoms (left column) and with data of 50 elongation curves with
563 atoms in the central wire each (right column) as function of the total conductance.
The initial geometries are shown in Fig. 9.19. The histograms are normalized to an
upper limit of 10 and the densities to an upper limit of 9.
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9.6. Doubling the size of Au contacts

One of the last questions discussed in this thesis is the question of size. Does the size of the
geometry matter? In the last section we saw small differences which could be traced back to
the number of atoms in the wire and it is obvious that higher conductance values can only
be achieved using large enough wires15. There were also differences in the histograms of the
small contacts used in earlier sections of this chapter to analyze the effect of for example the
statistics or temperature with respect to the ones used in section 5.1. While the differences
were not very large, they were sometimes not totally negligible, either.
To get a feeling of how much influence the size and structure of the initial wire has, this
section investigates the effect of doubling the number of atoms in the case of Au and in the
next section the effect of the shape of different materials will be investigated.

Figure 9.21.: Ideal initial geometries of the three configurations of Au studied in this section. They
have 563 (left), 1125 (middle) and 1087 (right) atoms in the central part. They all
have the same size in y-direction (out of paper), but different one in the x- and z-
directions.

The geometries used in this section are shown in Fig. 9.21. The left one is the one used as
standard in earlier sections, the middle one has double its length and the right one has one
side doubled perpendicular to the elongation direction. Because of the lattice structure the
number of atoms are not doubled perfectly
The results are shown in Fig. 9.22. As in the comparison of the crystal structures above,
the mean values seem to be very similar. But in this case the details are important. The
most important point in the conductance histogram is the third peak which is not visible
in the first and second row, but very clear and sharp in the third one at about 2.8 G0. The
second peak looks very similar in the three cases, but it is highest in the third one and has
the largest width in the second row.
This all has its effects onto the mean channel distribution and with it onto the Fano factor
and onto the mean thermopower at low conductance values. The peak of the second channel
at about 1/2 G0 is also best visible in the third row and least well in the second one and the
channels open more and more step like going from the left to the right one mapped onto the
Fano factor as increased densities at the dips of the multiple of G0. The mean thermopower
which missed the experimental found suppression at the maxima of the conductance his-
togram is now perfectly suppressed for both larger structures (blue lines in the insets of row
five).
This can be traced back to points which were already discussed in section 5.3. In short, the
result of that section was that parallel wires forming during the elongation process have a
large influence onto the behavior of the system leading to effects not possible without. This
15At least the cross section has to be large enough.
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Figure 9.22.: Density plots of the conductance as function of the displacement (first row), conduc-
tance histograms (second row), mean channel distributions with standard deviations
(third row) and density plots of the Fano factor (fourth row), the thermopower (fifth
row) and the ratio of κel to G0L0TK0 (sixth row) as function of the total conductance.
The temperature of the Au wires were set to 4 K. The statistics include data of 100
elongation curves of the default size (left column), data of 50 elongation curves with
doubled length (middle column) and data of 50 elongation curves with one size per-
pendicular to the elongation direction doubled (right column). The initial geometries
are shown in Fig. 9.19. The histograms are normalized to an upper limit of 40 (see
inset for the complete range) and the densities to an upper limit of 9.

was especially important for the explanation of the peak at about 1/2 G0 of the mean second
channel and partially for the peak in the conductance histogram at 2 G0.
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Figure 9.23.: Conditional transmission histograms of Au at 4 K according to Fig. 9.22. The total
transmission histogram is divided into contributions from single wires (red), two par-
allel wires (blue) and the rest (green). The condition had to be fulfilled at 2.0±0.1 G0

for at least 3 data points during the elongation process. The graph for the normal
system geometry (left) has an additional part in cyan (‘1 wire*’) which shows the
histogram of single wires with the additional restriction of only two channels > 0.2.
Almost all points of the single wires of the other two geometries fulfill this condition.
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Figure 9.24.: Conditional transmission histograms of the third Au geometry (v) at 4 K. The condi-
tion had to be fulfilled at 2.8 ± 0.1 G0 (third peak) for at least 3 data points during
the elongation process.

As this are again important points which differ between the three starting geometries, Figs.
9.23 and 9.24 show conditional histograms for parallel wires at 2 G0 and 2.8 G0, respectively.
While the second peak in the original case (left) is slightly dominated by the contributions
from plateaus of single wires (red), where about 1/3 of them has mainly two contributing
channels, the contribution from this type of wires is only minor in the larger contacts. Even
more important as in the original case are the contributions from two parallel wires (blue)
which is by far the dominant part for the second peak of the broad contacts (right). As the
parallel wires break one by one it is obvious that they also contribute visibly to the first
peak but almost not to the points in-between. The histogram of the long wires (middle) do
not have such a well defined second peak due to a large background of wires without plateaus.

The third peak (Fig. 9.24) visible only in the right histogram is again dominated by con-
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figurations with two parallel wires (four curves, blue) but has also contributions from three
parallel wires (one curve, cyan). There are three curves out of fifty of single wires with a
plateau at 2.8 G0. The contacts with two parallel wires do not contribute to the second peak
because at least one of the wires has to be thicker than a single atom to sum up to 3 G0.
In contrast, the contact with three parallel wires contributes to the second peak because all
three wires have to be of the single atom type16 and if one breaks than two remain with a
total conductance of about 2 G0. The two wires of that contact break at about the same
time such that the contribution to the first peak is vanishing small.

Figure 9.25.: Geometries contributing to the 3 G0 peak in the histogram of the broad (v) double
sized Au structures. The values for conductance and Fano factors are:
G = 3.0 G0, F = 0.15 (top left), G = 2.9 G0, F = 0.21 (top right)
G = 2.9 G0, F = 0.14 (bottom left), G = 2.9 G0, F = 0.04 (bottom right)

The different types contributing to the third peak are shown in Fig. 9.25: There is the single
wire type (top left, red color in the statistics before) which has a Fano factor in the range
of the saturation value discussed in section 5.2. The same is true for the geometry with
two parallel wires (bottom left, blue color in the statistics before). This is different for the
other two shown geometries with three parallel wires: While the one on bottom right has
as expected17 a very small Fano factor while the one on the top right side has a Fano factor
much higher than the saturation value. The reason for the high Fano factor in the latter case
is that not all three wires are of the single atom type, meaning that the one in the middle
is already in the tunneling regime, contributing only with a partially open channel which
is compensated by the wire on the right which contributes with more than one channel (it
has two fully open channels and two about half open channels). This curve does also not
contribute to the cyan histogram in the conditional histogram (Fig. 9.25) because it is only
a transient state (one wire is already in the rupture process) and does therefore not fulfill
the condition of a plateau with at least three points.

16With a diameter of a single atom in the narrowest part, can be cone like or a chain.
17Single atom wires usually have one (almost) fully open channel leading to a vanishing Fano factor.
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Figure 9.26.: Evolution of a Au contact with 1087 atoms in the central wire. The total conductance
(black solid line), the force (green solid line) and the channel distribution (colored
dashed lines) are plotted as function of the displacement of the walls from their ideal
position. The positions of the geometries shown on top are marked below by gray
vertical lines. They have conductance values of 10.6 G0, 3.9 G0, 1.9 G0, 0.9 G0 and
0 G0.

Fig. 9.26 shows the evolution of such a curve with an extreme number of parallel wires
evolving. As it is a nice summary of many things learned so far for the evolution of a Au
contact, it should be described here in more detail.
The first snapshot at about 10.6 G0 has five parallel wires which include one monomer and
one dimer on the left side. In the following the dimer breaks and the monomer forms a short
wire. Each of the four wires in the second snapshot has an (almost) fully open channel and
some of them have an additional very small one. Two of the four wires break nearly at the
same time leading to a sudden drop in the conductance and a loss of two fully open and
two almost closed ones. The two remaining wires are very flexible, leading to a long plateau
with a constant conductance and channel distribution. While the dimer in the background
breaks at some point, the small wire starts to elongate further, including two more atoms
into the wire. At the times the wire is under tension and therefore straight (see green force
curve), the first channel is almost perfectly open and therefore the conductance increases
to slightly below 1 G0. At the points where an atom joins the wire, leading to a relaxation
of its tension, the first channel and with it the total conductance decreases again. The last
time before the rupture the tension in the wire is largest and the conductance reaches 1.0 G0

with a perfectly open first channel.

In summary, the size of the contact has in this special case of Au interesting effects even
at low conductance values. The size modifies the possibility of parallel wires which leads to
modifications of the mean behaviors of the properties at higher conductance values toward
the behavior at low values which has a special impact if most or all of the parallel wires have
a single atom in the narrowest part.

As conclusion one would probably come to the end that one has to use only the largest ones.
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But the problem is clear, the computer time. While the calculation of a data point with
563 atoms in the central part needs less than 0.2 h on 72 cores18, it takes about 1.1 h on 144
cores for the large contacts. Doubling this size further to 2103 atoms leads to an increase of
the needed computer time by a factor of 10 to 11 h per data point on 144 cores19.

18Further parallelization leads to a bad parallelization-efficiency.
19A further parallelization currently fails due to a bug in a MKL implementation of a scalapack routine

which would be needed to replace its OpenMP parallelized version.
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9.7. Geometry of initial structures of Au, Al and Pb

In section 9.6 a special type of geometric modification was tested for one element. The
question was what happens if one doubles the size of the initial Au geometry in two different
directions.
This question should now be modified into what happens if one uses a similar number of
atoms but having a different initial geometry for different metals. As the second and third
configurations of the last section already discussed this question for very large Au geometries
at 4 K, the first part here will be a kind of repetition with small contacts.

(l) (v) (v, long) (v, square)

Figure 9.27.: Initial geometries of the long (first), the wide (second, ‘v’ (vertical)), the wide & long
(third, ‘v, long’) and the wide & square (fourth, ‘v, square’) wires with 110 (first and
second), 303 (third) and 112 (fourth) atoms in the central wire each.

9.7.1. Au

Fig. 9.28 shows the results of the long (‘l’) and vertical lying (‘v’) contacts at 4 K. The
difference is not so far away from what we already saw in Fig. 9.22 between the two data
sets with more than 1000 atoms: The long geometry has besides the first peak a broad second
one while the short one has a relative sharp second peak. Because of the small contact size,
peaks at higher conductance values are not very meaningful but the mean trends of the other
properties are interesting anyway. The second channel (green) has a dip at about 0.5 G0 in
the vertical, but not in the long configuration. It also opens more straight between 1 and 2 G0

in the vertical than in the long configuration which also modifies the behavior of the third
channel. The mean Fano factor behaves very similar, but again in the range between 1 and
2 G0 the value is largely suppressed in the vertical configuration which is a direct consequence
of the behavior of the second channel. It is an interesting remark at that point that the mean
values between 2.5 and 3 G0 are more suppressed in the long configuration. Because of the
many channels in that range this is not easy to see in the channel distribution. The spread
in the thermopower values is much larger in the long contacts, leading to large fluctuations
in the mean values. This is different in the vertical ones which already show the vanishing
mean values at about 1 and 2 G0. Similar are the results of the thermal conductance values,
while the vertical ones fulfill almost perfectly the Wiedemann-Franz law except for a few
points between 0.8 and 1.8 G0, there are large deviations in the data set of the long ones up
to about 2.5 G0.
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Figure 9.28.: Density plots of the total conductance as function of the displacement of their upper
walls to the initial positions (first row), conductance histograms (second row, 25 %),
mean channel distributions with standard deviations (third row) and density plots of
the Fano factor (fourth row), thermopower (fifth row), the ratio of κel to G0L0TK0

(sixth row) and the MCS (seventh row) as function of the total conductance. The Au
data are from about 900 elongation curves at 4 K with initial geometries as in Fig.
9.27. The histograms are normalized to an upper limit of 10 and the densities to an
upper limit of 9.
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The density plot of the MCS in the last row is consistent with the conductance histogram.
The spread in the long data set is much larger than in the vertical one leading to a mixture
of more geometric configurations contributing to the same conductance values which leads
to larger spreads in the other properties as seen above.

Figure 9.29.: Geometries belonging to the conductance peak of the long 4 K data set of Au at 2 G0.
The three configurations on the right side show the same geometry but from different
angles. The conductance and Fano factor values are: 1.9 G0:0.04, 2.0 G0:0.07 and
1.9 G0:0.22.

The two most interesting points in this plots are the conductance peak at 2 G0 with its
different channel distributions in the two configurations and the conductance peak (or the
part of it) in the long configuration at 2.5 G0 which is not significant in the vertical data
set. To have more insights one can search for geometries which have plateaus with this
characteristics.
Geometries for the conductance peak of the long wires at 2 G0 are shown in Fig. 9.29. The
two geometries on the left side have further more a very low Fano factor which means that
the transport is dominated by two almost fully open channels. But only about 6 % of the
curves contributing to the 2 G0 peak have a such low Fano factor (blue color in the density
plot in Fig. 9.28). But whether they have a low Fano factor or not, the right side depicts the
reason for the peak from three different angles of the same geometry: The low temperature
together with the thin20 configurations and long21 geometry support the development of
highly symmetric configurations during the elongation process. The example shown on the
right in Fig. 9.29 has a relative high Fano factor as have most of the similar geometries
building the conductance peak at 2 G0. The high flexibility of this wires leads to the very
broad distribution of the conductance values which leads to the very broad peak at 2 G0

with the lowered second and enhanced third mean channel.
The reason for the conductance peak of the vertical configuration at 2 G0, which is relative
sharp, is a different one. The zigzag structures like the ones shown in Fig. 9.29 for the long
configurations also appear if only short and with much reduced probability. Two wires were
found with such a structure contributing more than 15 data points22 to the 2 G0 peak. At
20For thicker wires the probability of not regaining a high symmetry after elongating half a unit cell (new

line of atoms) gets drastically enhanced because of the decreasing flexibility of the lattice itself.
21Short wires are much more rigid, leading to a pyramidal form.
22The number of data points is only relevant if one can compare them within a homogeneous data set. To

compare to different sets, e.g. between the long and the vertical configurations, one would have to apply
some sort of normalization to account at least for the different counting due to different total elongation
length.
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Figure 9.30.: Geometries belonging to the conductance peak of the vertical 4 K data set of Au
at 2 G0. The conductance and Fano factor values are: 2.0 G0:0.04, 1.9 G0:0.06 and
1.9 G0:0.09.

the same time 16 wires were found having parallel wires (left geometry in Fig. 9.30). The
second geometry in Fig. 9.30 contributes only 10 data points to the conductance peak. But
besides the question if one counts it to the parallel wires, it also contributes to the dip of the
second mean channel in the statistics at around 0.5 G0. The reason is that this kind of short
structure is very rigid, allowing it to break apart almost as it is now with a second channel
carrying at 0.5 G0 still 1/4 of the conductance.

Figure 9.31.: Geometries belonging to the conductance peak of the long 4 K Au contacts at 2.5 G0.
The two geometries of the left side are from the same elongation curve and are displaced
by 0.16 nm. The conductance and Fano factor values are: 2.5 G0:0.15, 2.5 G0:0.14 and
2.5 G0:0.15. All geometries have three channels greater 0.02.

The peak at 2.5 G0 consists of geometries with three atoms in the minimal cross section.
They can appear in different forms with more and less symmetry (Fig. 9.31). The first and
second geometry in Fig. 9.31, which belong to the same elongation curve, show that the
minimal cross section of three atoms stays stable enough for some time to cause neighboring
rows of atoms (below) to thin down to compensate the stretching instead of thinning further
itself. This type does not directly belong to the one shown on the right of Fig. 9.29 (the
process gets modified by the creation of disorder) but it also ends up with a short zigzag
structure which also contributes to the peak at 2 G0.
As this type only modifies the conductance histogram of the long wires, whereas the parallel
wires were only seen in the vertical ones, the question remains if it is the cross section that
matters, or perhaps the form of the cross section (square or rectangular), or is it the relation
between length and cross section that makes the difference?
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Figure 9.32.: The same as in Fig. 9.28 but for two other geometric configurations (see Fig. 9.27).
(25 % of first peak in the transmission histograms.) The statistics includes 500 elon-
gation curves.

To go into the direction of an answer Fig. 9.32 shows the results for the vertical-long and
vertical-square initial geometries. Interesting is that the length seems to have a strong effect
onto the mean values and its scattering, so the mean values of the long wires in Fig. 9.32
are more similar to the ones of the long wires in Fig. 9.28 and the short ones equivalent.
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The conductance histograms and some details like the exact evolution of the second mean
channel on the other hand seems to be influenced also by the shape of the cross section.
So has the conductance peak at 2 G0 in the vertical-square case almost vanished and in the
vertical-long case it is overlapped by a very broad peak as seen before in the data set of the
long contacts.
Looking onto the geometries one finds that the parallel wires, which mainly determined the
conductance peak and the evolution of the second mean channel of the vertical data set,
have now almost vanished. From the 16 wires contributing more than 15 data points each
during their elongation, only 5 (4) wires with 5 to 10 data points each of the vertical-long
(square) remained. Most parallel wires forming in the vertical-square configuration fuse to
a single wire or rip in parts or total after a few steps. In the vertical-long configuration
one of the pair of parallel evolving wires never survives the dimer configuration, in most
cases it already breaks after the evolution of the monomer configuration while the second
one sometimes survives long enough to build a chain.

In total, the length of the contact seems to have the most strong effect onto the mean values
and their variances, but the form and size of the cross section modifies (important) details.

Figure 9.33.: Geometries belonging to the conductance peaks of the 300 K data sets of Au at 2 G0.
On the left side two geometries from the same elongation curve coming from the long
(l) starting geometry and on the right side a configuration with two parallel wires and
one with two parallel atoms coming from the vertical (v) starting geometry are shown.
The conductance and Fano factor values are: 2.0 G0:0.53, 2.1 G0:0.48, 2.0 G0:0.10 and
1.9 G0:0.14.

Now one can do the same thing at room temperature. In the data set of the large contacts
at room temperature (sec. 7) no parallel wires have been found (only parallel atoms). So
the effect of the size is expected to be less pronounced. And indeed the effect is smaller
but again not negligible (Fig. 9.34). While the second conductance peak of the vertical
configuration looks very like the one of the long configuration at 4 K, the second peak in the
long configuration is relative symmetric and dominates the histogram. In contrast to the
conductance histograms, the channel distributions and with it the Fano factor are much like
their counterparts at low temperature. The most prominent feature in this direction is the
evolution of the second and third mean channel. This could imply that there are parallel
wires included.
Looking at elongation curves who support at least 5 data points with only two transmission
channels each to the peak at 1.95 ± 0.1 G0 three cases of parallel wires and two cases of
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Figure 9.34.: The same as in Fig. 9.28, but for Au at 300 K.

parallel atoms as shown on the right of Fig. 9.33 have been found. In the data set of the long
configuration none of those two has been found. This can be explained by the shortness of
the geometry in the vertical configuration which means that the walls still have a stabiliza-
tion effect onto the atoms in the constriction23.

23But it is not clear if this kind of finite size effect is for the good in comparison with the experiment or not.
Comparing this data with large geometries, this effect seems to be positive as the large contacts break
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In total, the initial geometry at room temperature has a similar strong effect as at low
temperatures for Au.

9.7.2. Al

In the last section we have seen that finite size effects modify the results of Au in different
manners. But does it play a role in other metals, too?
To answer this question this section analyzes the results for long and vertical contacts at 4 K
and 300 K for Al and the next section looks at the equivalent results for Pb.
Fig. 9.35 shows the results for Al at 4 K. This time the results between both configurations
seem to be very similar. The scattering is larger in the long than in the vertical configuration
as before in Au. Despite the first two peaks, the third one is for the long contacts at about
2.8 G0 and for the vertical ones at about 3.8 G0.
The peak at 2.8 G0 is mainly build up from zigzag structures (left geometry in Fig. 9.36) and
a geometry where each layer in the vicinity of the minimal cross section (‘a’, ‘b’) is build up
from two atoms which are stacked rotated by 90° toward each other.
The peak at 3.8 G0 is mainly build up by geometries with two parallel atoms in the minimal
cross section which are connected on both sides to larger structures (instead of the stacked
geometries which are at 2.8 G0).

The mean channels are very similar, but at for example 2 G0 the second channel is in mean
slightly more open and the third one more close in the long contacts in comparison to the
vertical ones. This small deviation is of interest because this point was already discussed in
the context of the difference between the crystallographic elongation directions (sec. 8).
Fig. 9.37 shows the differences in more detail by making histograms of the channels at
different conductance values. The vertical contacts seem to prefer larger open channels than
the long ones. This is already visible at 1 G0 where the vertical data set has a meaningful
number of fully open channels (τi > 0.95) whereas the long data set has none. At 2 G0 there
are three well defined peaks visible in the vertical data set while there are no well defined
ones visible in the long data set.
This difference can be explained considering the influence of the length of the contact to
the disorder: The longer a contact, the longer is the way between the walls and the more
disorder can modify the channel distribution by an increased number of possibilities and
therefore larger variances.

In the thermopower the larger spread of the data leads in the long contacts to a larger mean
value (at the most conductance values).
This is somewhat different at room temperature (Fig. 9.38) where the data set of the vertical
geometries show a very sharp peak at 1 G0, but not the data set of the long ones. The reason
for this peak is the stabilization of the structure by the walls. This can be seen in the high
symmetry of the contacts in the vicinity of the minimal cross section of the examples shown
in Fig. 9.39.
The channel histograms look very similar to the ones at low temperatures but the two sets
are more equal now. For example at 2 G0 both sets show two peaks at semi open channels.

often at a tiny place leading to small wires with large stabilizing walls.
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Figure 9.35.: The same as in Fig. 9.28, but for Al at 4 K.

The asymmetry between the different channel openings has increased in both sets so that it
is visible in the long one, too.

In total, though the differences between the different initial geometries are not such large as
for Au, they still play a non vanishing role.
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Figure 9.36.: Geometries belonging to the conductance peak of the long 4 K Al contacts at 2.8 G0

(left) and to the one of the vertical contacts at 3.8 G0 (right). The conductance and
Fano factor values are: 2.8 G0:0.19, 2.8 G0:0.26, 3.8 G0:0.27 and 3.8 G0:0.16.
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Figure 9.37.: Histograms of the transmission coefficients of the two data sets at 4 K at conductance
values between 1 and 8 G0 with an uncertainty of ±0.125 G0. The lines are the fitted
bimodal distributions P (τ) (equation 5.3).
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Figure 9.38.: The same as in Fig. 9.28, but for Al at 300 K.
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Figure 9.39.: Geometries belonging to the conductance peak of the vertical 300 K Al contacts at
1 G0. The conductance and Fano factor values are: 1.0 G0:0.13 and 1.1 G0:0.08.
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Figure 9.40.: Histograms of the transmission coefficients of the two data sets at 300 K at conductance
values between 2 and 8 G0 with an uncertainty of ±0.125 G0. The lines are the fitted
bimodal distributions P (τ) (equation 5.3).
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9.7.3. Pb
24

Figure 9.41.: The same as in Fig. 9.28, but for Pb at 4 K. The blue curves in the conductance
histograms are experimental results from [71].24

24The experiments were done with the MCBJ technique at liquid-helium temperature (T = 2.2−4.2 K) and
cryogenic vacuum conditions with high-purity wires.
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The mean values of the Pb contacts at 4 K are even less influenced from the initial geometry
than the ones of Al but the scattering of the data depends on the initial geometry as before
in the other two metals.
The conductance histogram of the long contacts has similar to the experimental findings of
Makk et al. [71] (blue dashed line) one peak at about 1.5 G0. The other one has a shoulder
at that position and a peak at about 1 G0 higher.
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Figure 9.42.: Evolution of a long Pb contact at 4 K. The horizontal blue line is at 1.5 G0. The
positions of the geometries on the left are marked by gray vertical lines in the plot
on the right. The conductance and Fano factor values are: 3.0 G0:0.43, 2.0 G0:0.55,
2.0 G0:0.34, 1.5 G0:0.43 1.50 G0:0.24 and 1.0 G0:0.11.
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Figure 9.43.: Evolution of a vertical Pb contact at 4 K. The horizontal blue line is at 2.2 G0. The
positions of the geometries on the left are marked by gray vertical lines in the plot
on the right. The conductance and Fano factor values are: 5.0 G0:0.32, 3.3 G0:0.35,
2.2 G0:0.35 and 1.5 G0:0.42.

A curve belonging to each of the main peaks of the two histograms are shown in Figs. 9.42
and 9.4325. The results are both very noisy26 which is due to the long and thin wires with a
large amount of disorder. As the influence of the walls to the ordering of the complete wire is
again stronger in the vertical geometries as in the long ones, they have a larger conductance
value at the same cross sections (compare geometry three of both figures). This also explains
the different slopes of the MCS-G plots in Fig. 9.4127.

25As it is the first time in the thesis that Pb contacts are shown, the evolution is shown with channel
distribution.

26The different scaling distorts a bit the viewing.
27Note that this effect seems negligible in the other metals (not visible in their MCS-G plots).



162 9.7. GEOMETRY OF INITIAL STRUCTURES OF AU, AL AND PB

In Pb several channels open at once28 leading to a relative high Fano factor compared to the
other metals investigated so far, even slightly higher than Pt (Fig. 5.9).
The thermopower vanishes in the mean above about 2 G0 (blue lines in insets of Fig. 9.41),
below it has an oscillatory behavior with a tendency toward negative values.
The Wiedemann-Franz law is relative good fulfilled except for very few points below 2 G0 in
the data set of the vertical contacts and a larger number in the set of the long ones. It has a
tendency toward smaller values, meaning that the electric thermal conductance is less than
expected from the linear approximation.
The room temperature results (Fig. 9.44) are slightly different for the vertical contacts as
expected, e.g. the contacts break slightly faster (about 0.5 nm) due to the higher mobility
of the atoms, but the results of the long contacts are totally different. The contacts thin
down rapidly till they reach a plateau at about 0.8 G0. This has an effect not only onto
the histograms but also onto the mean channel distribution where the second and higher
channels are suppressed in comparison to the other data sets and to the Wiedemann-Franz
law were the electric contribution to the thermal conductance is for a large number of points
significantly suppressed, down to about half what is expected from the linear approximation.

To see what happens in the long contacts, Fig. 9.45 shows the elongation process of a curve
which contributes significantly to the first peak at around 0.8 G0 which has not only shifted
down by about half the conductance compared to the corresponding peak at 4 K, but got
also sharper. As can be seen in the first geometry it is not mainly the sinning down of
the wire which causes the fast decrease of the conductance for this already thin wires, but
the fast increase in disorder. Nevertheless, the wire thins down very fast, reaching at one
point the size of about two to three atoms (geometry three). At that point the wire does
not shrink any further in minimal diameter. In contrast, the thicker parts thin down during
the further elongation process and the thin part converts to a higher symmetry (geometry
four). They present two layers of zigzag structures stacked above one another and shifted
by half a period against each other. This is depicted on the left side of geometry four where
the neighboring atoms within one zigzag structure are connected with black lines and the
ones of different ones with blue (back) and red (front) lines. This phase does not stretch
through the whole wire, but it can be found locally in almost every part. It has an mcs
value of about 3.8 though it looks like two atoms in diameter. The reason for this high value
is that because of the contribution of all four atoms in the neighborhood29. The channel
distribution on the right shows that the longer this tube gets, the more the higher channels
are suppressed. This is why in the mean they have this drop near below 1 G0.

The vertical (short) contacts (Fig. 9.46) do not show this phase with the double zigzag
structure. They also do not have the possibility of creating such large structures because
the influence of the walls, which is much larger here onto the middle part of the central
wire because of the small distance between the walls, keeps most of the atoms in a slightly
more symmetric configuration throughout the complete elongation process30. This is also
the reason why the difference to the low temperature results are much smaller than for the
long wires.

28Electronic configuration: [Xe]4f145d106s2p2.
29The mcs value of a zigzag structure depends on the angle between the atoms.
30Referenced to as finite size effect.
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Figure 9.44.: The same as in Fig. 9.28, but for Pb at 300 K.

In total, for Pb the shape has a very large effect, much larger than for the other metals which
were investigated. As not only the histograms are affected, one has to be very carefully with
the statistical results.
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Figure 9.45.: Evolution of a long Pb contact at 300 K. The horizontal blue line is at 0.8 G0. The
positions of the geometries on the left are marked by gray vertical lines in the plot
on the right. The conductance and Fano factor values are: 2.8 G0:0.40, 2.1 G0:0.30,
1.3 G0:0.30, 0.8 G0:0.32 and 0.6 G0:0.42.
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Figure 9.46.: Evolution of a vertical Pb contact at 300 K. The horizontal blue line is at 2.0 G0. The
positions of the geometries on the left are marked by gray vertical lines in the plot
on the right. The conductance and Fano factor values are: 5.4 G0:0.31, 3.6 G0:0.28,
2.2 G0:0.30 and 1.7 G0:0.41.



10. Summary

In this work mechanical and electrical properties of various metals were investigated. The
comparison with experiments showed very good agreement in most metals with most prop-
erties.
For example the thermopower results from Evangeli et al. [16] where they found that the
sign of the mean was different for Au and Pt and between bulk and atomic sized wires. Both
could be traced back to the different orbital structures of the metals which differ between
Au and Pt and between bulk and single atom contacts. A second point in their results was
an oscillation of the thermopower of Au with minima at the maxima of the corresponding
conductance histogram1, which was traced back to the channel saturation at that points.
In the publication with Evangeli et al. we were only able to show this for the first peak. A
later analysis of even larger structures was able to reproduce it also for the second and third
peak.
Similar results from Chen et al. [15] for the shot noise of Au, namely the suppression of the
shot noise at the maxima of the conductance histogram, could be traced back to the openings
of the channels. The second observation of them was that at about G0/2 in some samples
at least two channels had to contribute to the conductance contradicting the knowledge of
Au at that point. That observation could be explained by the appearance of parallel wires
which ripped off at about the same time. While at low temperatures parallel wires up to
several atoms in length each have been found, only atoms from parallel surfaces were found
to contribute multiple channels at about G0/2 at room temperatures.
The saturation of the Fano factor at higher conductance values could be shown to originate
from a relatively constant relation between open and semi-open channels which is specific for
each metal and similar within groups, for example the monovalent metals. The impression
that Mott’s model of ferromagnetic metals at those scales could be incorrect could be con-
firmed. While the majority spins are dominated by s orbitals consistent with Mott’s theory,
the minority spins are dominated by d orbitals which drastically enhance the contribution to
the conductance via additional channels compared to the majority spins, thus leading to a
negative spin polarization. The resulting noise of these ferromagnetic materials is therefore
a superposition of the majority spins which behave more like monovalent metals like Au and
the minority spins which behave very similar to Pt, which is dominated by the d orbitals.
The first peaks of the conductance histogram of the low temperature experiments of Mg from
Smit et al. [13] could be roughly reproduced. No signature of conductance quantization was
apparent in the corresponding channel distribution or noise calculations. But indications
were found that parallel wires could play a role, similar to Au, where parallel wires lead
to an enhancement of the higher peaks in the conductance histogram. This could probably
explain the experimental conductance histogram of Mg, too.
The conductance values and channel distributions of the plateaus of the bistable switches
from Schirm et al. [14] were compared with the results from the calculated elongation pro-

1At about integers of G0.
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cesses of Al in three different elongation (or growin) directions (〈100〉 , 〈110〉 and 〈111〉 ).
Best comparison with the whole experimental data set (not only the plateaus) was found
in the 〈111〉 direction, but examples where both plateaus (the upper and lower one) were
achieved during one elongation process have been found in all three directions. All examples
examined showed a transition between the two states involving only up to four bonds which
had to be broken or established.

As already mentioned there are also a few points which do not fit very well to the experimen-
tal findings. The most relevant discrepancies found during this work are the conductance
histogram of Fe and that higher peaks in most histograms could not be reproduced very
well. The reason for the first one is still unclear, a possible problem could be the MD po-
tentials though different ones were tested. The problem of the higher peaks is most likely a
consequence of the still relatively small system size compared to experiments.

Other results of the work are that

• the velocity of the elongation speed is not very important (at least within some range),

• the histograms and mean values evolve smoothly and not somehow steplike with tem-
perature between 4 K and room temperature,

• the thermostating is important to not drastically heat up (or even melt) the wire,

• (at least for Fe) the crystal structure (fcc or bcc) does not drastically modify the
results,

• the closing curves are less sensitive to temperature as the opening ones and

• accordingly the distribution and mean values of the closing curves even at room tem-
perature behave more like the low temperature results of the closing curves except that
the very long plateaus at 1 G0 are missing (Au),

• a statistics of 10 curves is already sufficient (but very noisy) to see most features of the
histograms and mean values where it is at room temperatures better converged than
at low temperatures and

• the initial geometry and size of the contacts can modify the results drastically (specially
in Au where it additionally modifies the possibility of the appearance of parallel wires).
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Open questions

This work could not close the subject from theoretical side completely. Open questions are
for example the influence of the system size onto the results. The tests made in this work
showed that there are finite-size effects which can be large for some details (for example the
frequency of appearance of parallel wires in Au).
Parallel wires are an interesting point on their own. They have been found in Au and a few
in Mg but not in the other metals. In Au the appearance of parallel wires was found to be
drastically influenced by the system size and by the initial geometry. Therefore one could
ask the question, whether there is a critical size at which parallel wires could also appear
in other materials? And a related question is if one could trigger the appearance of parallel
wires through finite size effects by choosing special initial geometries?
A correlated question is the influence of the found parallel structures in Mg (very rare
appearance of parallel wires) onto its mean properties and if this influence could be found
in experiments, too.
A different question not asked in this work contains the influence of mechanical waves with
long wavelength onto the electrical properties. For example what is the time-dependent
conductance of an oscillating bridge? Ignoring electron-phonon interaction this question
could be analyzed using the same programs and methods.





A. Appendix

A.1. Examples

In the following examples the spin index σ which could be appended almost everywhere will
be omitted. The same for the superindex r,a of the retarded and advanced Green’s functions
Gr,a → G and of the energy Er,a = E ± ıη → E.

A.1.1. Example 1: H2

The following example is a short summary of chapter 5.3.1 of [4].

The tight-binding Hamiltonian for a hydrogen molecule without spin can be written in second
quantisation as

H =
∑
i

εic
†
ici +

∑
i 6=j

tijc
†
icj (A.1)

where i, j are the orbital sites, c†i and ci are the creation and annihilation operators of a
particle (electron) on site i, εi is the onsite energy of site i and tij is the hopping parameter
(coupling) between site i and j. This Hamiltonian reduces in our case to

H = ε0(n1 + n2) + t(c†1c2 + c†2c1) (A.2)

= ε0

1 0

0 1

 + t

0 1

1 0

 (A.3)

where ni = c†ici is the number operator which counts the number of electrons on site i. The
Green’s functions can now be calculated in three different ways: with (i) the direct definition
(2.48), with (ii) the spectral representation (2.49) and (iii) with Dyson’s equation.

(i) the direct definition:
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G(E) = lim
η→0

[E1 − H]−1 (A.4)

=

E − ε0 −t

−t E − ε0

−1 (A.5)

G11(E) =
E − ε0

(E − ε0)2 − t2
(A.6)

=
1

2

E − (ε0 + t)︸ ︷︷ ︸
ε+

−1 +
1

2

E − (ε0 − t)︸ ︷︷ ︸
ε−

−1 (A.7)

=
1

2

(
1

E − ε+
+

1

E − ε−

)
. (A.8)

Here ε+ and ε− are the energies of the bonding and antibonding states of the hydrogen
molecule.
And the density of states projected onto site 1 follows up to

%1(E) = ∓ 1

π
={G11(E)} (A.9)

=
1

2
δ(E − ε+) +

1

2
δ(E − ε−) (A.10)

(ii) the spectral representation:
Using the eigenfunctions of the bonding (|Ψ+〉) and antibonding (|Ψ−〉) states with eigen-
values ε±:

|Ψ±〉 =
1√
2

(|1〉 + |2〉) (A.11)

G11(E) = 〈1 |G| 1〉 (A.12)

=
∑
n=±

〈1 |Ψn 〉 〈Ψn |1〉
E − εn

(A.13)

=
∑
n=±

|〈1 |Ψn 〉|2

E − εn
(A.14)

=
1

2

(
1

E − ε+
+

1

E − ε−

)
. (A.15)

(iii) Dyson’s equation:
Here one has to divide the Hamilton matrix (H) into an unperturbed part (H0) and a
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perturbation (V). The perturbation is chosen to be the coupling between the two states:

G(E) = g(E) + g(E)VG(E) (A.16)

H = H0 + V = ε0

1 0

0 1

 + t

0 1

1 0

 (A.17)

g(E) = [E1 − H0]−1 = [E − ε0]
−1 1 (A.18)

g is the Green’s function of the unperturbed system.
Now taking into account, that g is diagonal while V is purely off-diagonal, one ends up with:

G21(E) = g22(E)V21G11(E) (A.19)

G11(E) = g11(E) + g11(E)V12G21(E) (A.20)

= g11(E) + g11(E)V12g22(E)V21G11(E) (A.21)

= g11(E) + g11(E)Σ11(E)G11(E) (A.22)

=
1

E − ε0 − Σ11(E)
(A.23)

=
1

2

(
1

E − ε+
+

1

E − ε−

)
. (A.24)

Σ is the so called self-energy, which modifies the unperturbed system (position (ε0) and
lifetime of the energy levels) due to perturbations like the interaction between different
states (e.g. atoms).

Dyson’s equation does not look very handy, and indeed, in this example it isn’t. But in
other cases it will be the only feasible way to go. The next example will be such a case.

A.1.2. Example 2: Semi-infinite linear chain

The following example is a short summary of chapter 5.3.2 of [4].

The tight-binding Hamiltonian of a semi-infinite linear chain is almost identical to the one of
the H2 molecule except that one does not have only two atoms (states), but infinitely many
of them:

H = ε0
∑
i

ni + t
∑
i

(
c†ici+1 + c†i+1ci

)
(A.25)

where i = 1, 2, ... is the index of the atom (state).
To calculate the Green’s function with the direct definition or the spectral representation
seems to be impracticable because one would have to handle infinite large matrices. For
Dyson’s equation one can divide the system into two subsystem: a single atom and a semi-
infinite linear chain. The perturbation is coupling between both, as in the case of our H2
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example. This leads us to

H = H0 V =

ε0 0

0 H′

 + t

0 1

1 0

 (A.26)

where H′ is the Hamiltonian of the unperturbed subsystem 2 which is equal to H, because
1 atom more or less does not modify the infinite system.
Dyson’s equation now reads again:

G11(E) = g11(E) + g11(E)V12G21(E) (A.27)

G21(E) = g22(E)V21G11(E) (A.28)

g11(E) = 1/(E − ε0) (A.29)

The difference is now, that g22 = G11 the unperturbed Green’s function of subsystem 2 g22
is equal to the surface Green’s function G11 of the semi-infinite linear chain.
Putting everything together one ends up with

G11(E) =
1

E − ε0
+

t2

E − ε0
G2

11(E) (A.30)

=
1

t

E − ε0
2t

−

√(
E − ε0

2t

)2

− 1

 (A.31)

=
1

t

E − ε0
2t

∓ ı

√
1 −

(
E − ε0

2t

)2
 (A.32)

%1(E) =
1

π
={G11(E)} (A.33)

=
1

πt

√
1 −

(
E − ε0

2t

)2

, |E − ε0| ≤ 2|t| (A.34)

In contrast to the H2 example, there is an infinite number of states within the energy band
of the semi-infinite linear chain of 2t around ε0, the energy of the unperturbed atom (state).

A.1.3. Example 3: A single level coupled to electrodes

The following example is a short summary of chapter 5.3.3 of [4].

This last example is the one closest to our calculations. The aim is to couple two infinite
leads (like the semi-infinite chain before) to a single level (atom) with energy εc in the center
between the electrodes.
In the ’real’ calculations one replaces the single level in the center by a couple of atoms with
orbitals. The (electron) orbitals are then coupled to the electrodes as the single level here.
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The Hamiltonian for this example can be written as (without spin)

H = HL + HR + HC + VCL + VCR (A.35)

= HL + HR + εcc
†
CcC + tL

(
c†CcL + c†LcC

)
+ tR

(
c†CcR + c†RcC

)
.

(A.36)

HL/R/C are the Hamiltonians of the unperturbed left, right and center system (leads/single
level) and VCL/CR are the couplings between the center system and the two leads.

Now, as already indicated, one can use the results of the example with the semi-infinite chain
to get the element of the Green’s function for the central part to derive the local density of
states:

GCC(E) = gCC(E) + gCC(E)VCLGCL(E) + gCC(E)VCRGCR(E) (A.37)

GLC(E) = gLL(E)VLCGCC(E) (A.38)

GRC(E) = gRR(E)VRCGCC(E) (A.39)

gCC(E) = 1/(E − εc) . (A.40)

Here one has to add a coupling term to each electrode (instead of only one in total like in
the previous examples).
With the couplings VCL/CR = tL/R, where tL/R are the hopping parameters to the left/right
electrodes, one gets

GCC(E) = gCC(E) + gCC(E)VCLgLL(E)VLCGCC(E) (A.41)

= gCC(E) + gCC(E)VCRgRR(E)VRCGCC(E) (A.42)

= gCC(E) + gCC(E)
(
t2LgLL(E) + t2RgRR

)
GCC(E) (A.43)

= gCC(E) + gCC(E)ΣCC(E)GCC(E) (A.44)

=
1

E − εc − ΣCC(E)
(A.45)

with the self-energy ΣCC which moves the energy level εc by an amount of Re {ΣCC(E)}
and introduces a finite ’energy width’ to the non interacting level by its imaginary part
Im {ΣCC(E)}.
In the wide-band approximation (gLL/RR is independent of E and purely imaginary near εc),
one can replace ΣCC = ∓ıΓ = ∓ı(ΓL + ΓR) with ΓL/R ≈ ±ıt2L/RgLL/RR, the scattering
rates between leads and the central part. Within this approximation one ends up with

GCC(E) =
1

E − εc ± ıΓ
(A.46)

%C(E) =
1

π
={G11(E)} =

1

π

Γ

(E − εc)2 + Γ2
(A.47)
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%C(E) is now a Lorentzian function with half-width at half-maximum Γ which describes as
imaginary part of Σ the finite ’energy width’ of the energy level due to its interactions to
the leads.
The inverse (~/Γ) gives a timescale which can be interpreted as time an electron needs to
jump from one state to the other (also mentioned as finite lifetime of the resonant level).

A.2. Program specific data

As this work was the first one in the group using LAMMPS, the following input file was the
basis for several Bachelor and Master theses in the area of mechanical and thermal properties
of nano scale wires, bridges and membranes (for example in [197–199]).

#################################################
# e longa t i on o f i n i t i a l l y i d e a l wire v ia LAMMPS #
#################################################

# un i t s and boundary cond i t i on s
un i t s metal
atom_style atomic
boundary s s s

# crea t e domains
l a t t i c e f c c 4 .0780 o r i g i n 0 0 0
reg i on mdbox block −7.0 7 .0 −3.5 3 .5 −1.5 1 .5
r eg i on wal lu block −9.5 9 .5 −5.0 5 .0 1 .5 2 . 5
r eg i on wal ld block −9.5 9 .5 −5.0 5 .0 −2.5 −1.5
r eg i on regun union 3 wal lu wal ld mdbox

create_box 1 regun
create_atoms 1 reg i on regun

# sp e c i f y i n t e r n a l / ghos t atoms
group i n t e r n a l r eg i on regun
group bu reg i on wal lu
group bd reg i on wal ld
# make group wi thout wa l l atoms
group i n t e r n a l s u subt rac t i n t e r n a l bu bd

# sp e c i f y in t e r−atomic p o t e n t i a l wi th e lement s t r i n g f o r output
pa i r_s ty l e eam/ f s
pa i r_coe f f ∗ ∗ . . /Au. eam . f s Au
va r i ab l e element s t r i n g 79

# keap wal l−atoms f i x e d f o r e q u i l i b r a t i o n , un i t s box [A] , e l s e [ a0 ]
f i x f l b bu move l i n e a r 0 . 0 0 . 0 0 .0 un i t s box
f i x f rb bd move l i n e a r 0 . 0 0 . 0 0 . 0 un i t s box

# sp e c i f y ne ighbor /re−ne i ghbor ing parameters
neighbor 0 .3 bin
neigh_modify every 10 de lay 0 check no

# setup thermal output and make some s p e c i a l c a l c u l a t i o n s
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compute vwire i n t e r n a l s u s t r e s s /atom NULL v i r i a l
compute vwir i n t e r n a l s u reduce sum c_vwire [ 3 ]
compute mytemp i n t e r n a l s u temp

va r i ab l e vw equal c_vwir/ vo l
v a r i ab l e fw equal c_vwir/ l z ∗10^(−6)

# pr in t every 100 s t e p s : s tep−number , E_pot , E_kin , p , box−s i z e ,
# v i r i a l , p_zz , force , i n t e r n a l T, own d e f i n i t i o n o f temperature
thermo 100
thermo_style custom step pe ke p r e s s l x ly l z v_vw pzz v_fw temp c_mytemp

# crea t e i n i t i a l v e l o c i t i e s wi th gauss ian d i s t r i b u t i o n at T=300K
v e l o c i t y i n t e r n a l s u c r e a t e 300 2269839 d i s t gauss ian

# time i n t e g r a t o r o f NVT ensemble at T=300K (Nose−Hoover thermos ta t )
f i x NVT in t e r n a l s u nvt temp 300 300 100

# time in ps , works f i n e wi th 0.0001
t imestep 0 .001

# e q u i l i b r a t e MD f i e l d
run 100000

# de f i n e output : a l l , wire , wa l l s ; r e d e f i n e element number
dump d0 a l l xyz 10000 wire_tota l . xyz
dump d1 i n t e r n a l s u xyz 10000 wire . xyz
dump d2 bu xyz 10000 wall_u . xyz
dump d3 bd xyz 10000 wall_d . xyz

dump_modify d0 element ${ element }
dump_modify d1 element ${ element }
dump_modify d2 element ${ element }
dump_modify d3 element ${ element }

# s t r e t c h system ( opening curve )
#fo r each atom v l /vr , 1 means 1A/1ps = 10^{−10}m/10^{−12}s = 100 m/s
f i x f l b bu move l i n e a r 0 . 0 0 .0 0 .001 un i t s box
run 7500000

# ge t system to a h a l t and r e l a x
f i x f l b bu move l i n e a r 0 . 0 0 .0 0 .000 un i t s box
run 100000

# shr ink system ( c l o s i n g curve )
f i x f l b bu move l i n e a r 0 . 0 0 .0 −0.001 un i t s box
run 7500000

Listing A.1: LAMMPS input script
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##########################################################################
# TB transpor t code − inpu t f i l e #
##########################################################################
# remark : most op t i ons have d e f a u l t va lues , so they are not needed here , #
# (n) = needed #
##########################################################################

element = Al # (n) name o f e lement
TBin f i l e = al_par # (n) TB parameter f i l e
coordinates_c = wire . xyz # cen t r a l wire where the t ransmiss ion i s

# to be c a l c u l a t e d in xyz format
coordinates_u = wall_u . xyz # upper wa l l in xyz format
coordinates_d = wall_d . xyz # lower wa l l in xyz format
p lane_di r ec t i on = 100 # e longa t i on d i r e c t i on , p o s s i b l e are

# 100 , 110 , 111
spin_pol = F # i s t ran spo r t sp in po l a r i z e d ? Needs ex t ra

# parameters in TBin f i l e i f t rue
num_c_atoms = 288 # (n) atoms in the cen ter ( nca )
num_u_atoms = 392 # (n) atoms in the l e f t wa l l ( n la )
num_d_atoms = 392 # (n) atoms in the r i g h t wa l l ( nra )
n_xy_cells = 10 # e l e c t r o d e fcc−100−p lane cons t ruc t i on
n_z_cel ls = 3 # e l e c t r o d e fcc−100−p lane cons t ruc t i on
i_max_read_xy = 15 # i_max fo r G−bu lk−cons t ruc t i on (−> cu t o f f )
i_max_read_z = 0 # i_max fo r G−bu lk−cons t ruc t i on (−> cu t o f f )
g_se l ec t = s # [ b=bu l k / s=sur f a ce ]
compute_mode = rxx # 1: [ c : compute , r : read , g : genera te ] ,

# 2 : [ s : s top a f t e r genera t ion ] ,
# 3: [ d : rm g lead_dir ] , x : ! s , ! d

glead_dir = glead_dir_al # lo ca t i o n o f l ead greens f unc t i on s to be
# saved on desk ( huge , up to s e v e r a l 10 GB,
# shou ld be saved l o c a l l y ; r eu sa b l e )

ca lc_channe ls = T # ca l c u l a t e d i f f e r e n t channe ls ?
pa ra l l e l_e l oop = T # p a r a l l e l i z a t i o n sceem of energy loop

# frame i n f o s :
f i r s t_ s t r e t c h c o n f i g = 1 # f i r s t s t r e t c h f o n f i g
l a s t_ s t r e t c h c on f i g = 501 # l a s t s t r e t c h c o n f i g to be computed
s t e p s i z e = 2 # s t e p s i z e f o r s t r e t c h i n g ( in frames )
s tep_geo in fo = 1 # frame fo r geo in format ion

# energy :
r e f e rence_occ = 1 .5 # (n) r e f e r ence occupat ion o f e lement
read_Ef = T # use fermi Energy from Ef_read
Ef_prec i s ion = 1 .0E−8 # pre c i s i on f o r de terminat ion o f E Fermi
E_lower = 0.20 # upper border o f E Fermi
E_upper = 0.40 # lower border o f E Fermi
Ef_max_it = 20 # max i t e r a t i o n s t e p s b e f o r e error
Ef_read = 0.309352607 # Fermi energy
Delta_E_around_Ef = 0.000502 # Delta E (Ryd) wi th [E_f−D,E_f+D] (4 .0K)
n_E_around_Ef = 5 # energy po in t s around E_fermi , dev ide

# 2∗D in to 2n i n t e r v a l s wi th 2n+1 po in t s
intpts_gen_str = f i l e # read i n t e g r a t i o n po in t s from f i l e or

# use e q u a l l y spaced po in t s ( f i l e /genp )
i n t p t s_ f i l e = i n tp t s . dat # f i l e wi th i n t e g r a t i o n po in t s
int_pts = 149 # number o f i n t e g r a t i o n po in t s i f genp
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eta_int = 0.0001
eta_xx = 0.02
eta_cx = 0.00
eta_cc = 1E−8

# charge neu t r a l loop :
# ( opt imal va l u e s depend on mater ia l , s i z e and shape o f con tac t )
charge_neutral_itmax = 120 # max i t e r a t i o n s in charge n e u t r a l i t y
us e_sh i f t s = T # use o ld s h i f t s as s t a r t i n g po in t
min_damp_value = 5.01E−02 # minimal damping va lue
diff_damp_value = 1.01E−02 # damping va l u e s ( i n t e r n a l mod i f i ca t i on )
n_cs_damp_arr = 1 0.350 # damping va l u e s : i t e r a t i o n−s t ep va lue
n_cs_damp_arr = 2 0.250 # the i t e r a t i o n s t ep has to inc rea se
n_cs_damp_arr = 5 0.100
n_cs_damp_arr = 10 0 .010

# RAM opt im i za t i on :
sprdim = 0.8 # (1−sprdim ) i s spar senes s o f matrix ( c en t r a l wire )

,
# the l a r g e r the con tac t the more sparse the matrix

spxcdim = 0.8 # ( wire−wa l l s ) , ( program w i l l f a i l i f to sma l l )
spmult f = 2 .0 # mod i f i ca t i on va lue during run , shou ld be >= 1.0
save_steps = 200 # save energy dependent r e s u l t s on desk a l l x s t e p s

# LDOS:
LDOS_out = T # ca l c u l a t e LDOS ( time consuming ) : T/F
LDOS_array_atom = 17 # l i n e number o f atom in wire f i l e ( s t a r t s

# with 1 , o ther programs l i k e vmd s t a r t wi th 0)
LDOS_array_atom = 51 # up to num_c_atoms p o s s i b l e
LDOS_array_eta = 0.01001 # energy e ta f o r c a l c u l a t i o n

# ( low/ high va lue : h igh no i se / low r e s o l u t i o n )

# accuracy f o r i n t e r n a l checks :
eps_geocheck = 1E−3 # accuracy f o r p o s i t i o n o f wa l l atoms
eps_decimation = 1E−8 # accuracy o f convergency in decimation

# output :
out_transmiss ion = Transmiss ion . dat # a l l v a l u a b l e in format ions ,
# i f sp inpo l , X_sp1 and X_sp2 are added
n_Ti_out = 50 # number o f channe ls saved in out− f i l e
min_Ti = 1E−2 # minimal va lue o f channel to be counted
t ime_f i l e = time . out # time data during run

# output o f matr ices f o r t e s t i n g :
HS_out = F
HSk_out = F
G_0jab_out = F

# end :
eps_broken_contact = 1E−2 # minimal t ransmiss ion be f o r e s topp ing
stop_after_break = T # end a f t e r break ing or a f t e r l a s t_ s t r e t c h c on f i g
cleaning_up = T # erase temporal f i l e s

Listing A.2: Transport code input script
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Figure A.1.: Call-graph from callgrind (resolution in pdf sufficient for scaling).
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A.3. Au multiwire geometries

0.2 nm

1.0 nm
1.4 nm

2.3 nm

Figure A.2.: Au geometries: 83.0(98),8.7(14),2.8(4),0.93(2:0.92,0.01)
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Figure A.3.: Au: Left: again geometry at 1.0 nm from a different angle, with total transmission
8.7 G0 and 14 channels. Right: channel distribution with marks at the above geome-
tries.
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Figure A.4.: 19.7(31),6.9(13),1.85(2:1.0,0.84)
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Figure A.5.: Geometries of an elongation process of Au with 2103 atoms at 4 K and the correspond-
ing channel distribution.
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A.4. Al geometries
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Figure A.6.: Same geometry as the upper left figure in table 8.1, but with two additional geometries
in-between. Below: channel distribution during the elongation process with the four
geometries marked.
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Figure A.7.: Same geometry as the center center figure in table 8.1, but with one additional geome-
tries in-between. Below: channel distribution during the elongation process with the
four geometries marked.
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A.5. Histograms of channel transmissions
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Figure A.8.: Histogram of the transmission coefficients at a conductance of 1 G0
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Figure A.9.: Histogram of the transmission coefficients at a conductance of 2 G0
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A.6. Fano factor convergence values - overview

metal small large giants
4 K 300 K 4 K 300 K 4 K (close) 4 K

Au (l) 0.15± 0.03 0.17± 0.02 - - - 0.16± 0.02

Au (v) 0.13± 0.03 0.13± 0.03 0.16± 0.02 0.15± 0.02 - 0.16± 0.03

Al (l) 0.24± 0.03 0.22± 0.03 - - - -
Al (v) 0.17± 0.03 0.17± 0.03 0.14± 0.02 - 0.18± 0.03 -
Pb (l) 0.32± 0.03 0.32± 0.04 - - - -
Pb (v) 0.29± 0.03 0.30± 0.02 - - - -
Ag (v) - - 0.12± 0.02 - 0.12± 0.02 -
Cu (v) - - 0.14± 0.02 - - -
Mg (v) - - 0.18± 0.02 - 0.17± 0.03 -
Pt (v) - - 0.27± 0.03 0.27± 0.02 - -

Table A.1.: Overview of the fitted values for the convergence of the Fano values for high conductance
values.

metal total spin up spin down
Fe (4 K) 0.28± 0.02 0.21± 0.02 0.35± 0.02

Co (4 K) 0.27± 0.02 0.21± 0.02 0.30± 0.02

Ni (4 K) 0.24± 0.02 0.16± 0.03 0.28± 0.02

Ni (300 K) 0.25± 0.02 0.16± 0.02 0.29± 0.02

Table A.2.: Overview of the fitted values for the convergence of the Fano values for high conductance
values of spin dependent materials.
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A.7. Experimental results

Figure A.10.: Experimental results done by Ran Vardimon from the group of Oren Tal, Weizmann
Institute of Science, Israel (private communication). The experiments were done in
cryogenic vacuum at about 10−5 mbar and 4.2 K.
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